Properties

Label 294.7.6.a1.a1
Order $ 7^{2} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^2$
Order: \(49\)\(\medspace = 7^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(7\)
Generators: $\left(\begin{array}{rrr} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{array}\right), \left(\begin{array}{rrr} 5 & 0 & 6 \\ 0 & 1 & 0 \\ 2 & 0 & 4 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, a semidirect factor, abelian (hence metabelian and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_7^2:S_3$
Order: \(294\)\(\medspace = 2 \cdot 3 \cdot 7^{2} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^2:(C_6\times S_3)$, of order \(1764\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $\GL(2,7)$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(49\)\(\medspace = 7^{2} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_7^2$
Normalizer:$C_7^2:S_3$
Complements:$S_3$
Minimal over-subgroups:$C_7^2:C_3$$C_7\times D_7$
Maximal under-subgroups:$C_7$$C_7$$C_7$

Other information

Möbius function$3$
Projective image$C_7^2:S_3$