Subgroup ($H$) information
Description: | $D_{19}$ |
Order: | \(38\)\(\medspace = 2 \cdot 19 \) |
Index: | \(76\)\(\medspace = 2^{2} \cdot 19 \) |
Exponent: | \(38\)\(\medspace = 2 \cdot 19 \) |
Generators: |
$b^{2}c^{18}d^{9}, c$
|
Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $D_{19}\wr C_2$ |
Order: | \(2888\)\(\medspace = 2^{3} \cdot 19^{2} \) |
Exponent: | \(76\)\(\medspace = 2^{2} \cdot 19 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{19}^2.C_{36}.C_2^2$ |
$\operatorname{Aut}(H)$ | $F_{19}$, of order \(342\)\(\medspace = 2 \cdot 3^{2} \cdot 19 \) |
$\operatorname{res}(S)$ | $F_{19}$, of order \(342\)\(\medspace = 2 \cdot 3^{2} \cdot 19 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
$W$ | $D_{19}$, of order \(38\)\(\medspace = 2 \cdot 19 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $38$ |
Möbius function | $0$ |
Projective image | $D_{19}\wr C_2$ |