Properties

Label 2888.m.152.a1.a1
Order $ 19 $
Index $ 2^{3} \cdot 19 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{19}$
Order: \(19\)
Index: \(152\)\(\medspace = 2^{3} \cdot 19 \)
Exponent: \(19\)
Generators: $c$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $D_{19}\wr C_2$
Order: \(2888\)\(\medspace = 2^{3} \cdot 19^{2} \)
Exponent: \(76\)\(\medspace = 2^{2} \cdot 19 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{19}^2.C_{36}.C_2^2$
$\operatorname{Aut}(H)$ $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
$\operatorname{res}(S)$$C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(722\)\(\medspace = 2 \cdot 19^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{19}\times D_{19}$
Normalizer:$D_{19}^2$
Normal closure:$C_{19}^2$
Core:$C_1$
Minimal over-subgroups:$C_{19}^2$$C_{38}$$D_{19}$$D_{19}$
Maximal under-subgroups:$C_1$
Autjugate subgroups:2888.m.152.a1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{19}\wr C_2$