Properties

Label 2880.hl.90.a1.a1
Order $ 2^{5} $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(2,4,3,5)(9,11), (10,12), (2,3)(4,5)(9,11)(10,12), (7,8), (9,11)(10,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $S_3\times F_5\times S_4$
Order: \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times F_5\times S_4$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^4:C_2^3:\GL(3,2)$, of order \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$C_4^2:C_2^2$
Normal closure:$S_3\times F_5\times S_4$
Core:$C_1$
Minimal over-subgroups:$C_2^3\times F_5$$C_{12}:C_2^3$$C_4^2:C_2^2$
Maximal under-subgroups:$C_2^4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$0$
Projective image$S_3\times F_5\times S_4$