Properties

Label 2880.hl.72.c1.a1
Order $ 2^{3} \cdot 5 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{10}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(10,12), (7,8), (1,2,5,4,3), (9,11)(10,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $S_3\times F_5\times S_4$
Order: \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times F_5\times S_4$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4\times \GL(3,2)$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$D_{10}.C_2^4$
Normal closure:$C_5\times S_3\times S_4$
Core:$C_5$
Minimal over-subgroups:$C_{10}\times D_6$$C_2^2\times D_{10}$$C_{10}:D_4$$D_4\times C_{10}$
Maximal under-subgroups:$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2^3$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$S_3\times F_5\times S_4$