Properties

Label 2880.gn.8.a1
Order $ 2^{3} \cdot 3^{2} \cdot 5 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times A_5$
Order: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(2,5,4)(6,13,9,7,12,8)(10,11), (6,9,12)(7,8,13), (1,2)(3,4)(6,7)(8,9)(10,11)(12,13), (6,7)(8,9)(10,11)(12,13)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $C_2^4:\GL(2,4)$
Order: \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times S_4\times S_5$, of order \(17280\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times S_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2\times S_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$A_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_2^2\times \GL(2,4)$
Normal closure:$C_2^3:\GL(2,4)$
Core:$C_2\times A_5$
Minimal over-subgroups:$C_2^3:\GL(2,4)$$C_2^2\times \GL(2,4)$
Maximal under-subgroups:$\GL(2,4)$$C_2\times A_5$$C_6\times A_4$$C_3\times D_{10}$$C_6\times S_3$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image$C_2^3:\GL(2,4)$