Properties

Label 2880.gn.40.b1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times A_4$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,3,5)(6,8,13,7,9,12)(10,11), (1,4)(3,5)(6,13,9)(7,12,8), (1,5)(3,4)(6,9,13)(7,8,12), (6,7)(8,9)(10,11)(12,13), (6,9,13)(7,8,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^4:\GL(2,4)$
Order: \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times S_4\times S_5$, of order \(17280\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_2^2:C_6^2$
Normal closure:$C_2^3:\GL(2,4)$
Core:$C_2$
Minimal over-subgroups:$C_6\times A_5$$C_2\times A_4^2$$C_2^2:C_6^2$
Maximal under-subgroups:$C_3\times A_4$$C_2^2\times C_6$$C_2\times A_4$$C_2\times A_4$$C_3\times C_6$

Other information

Number of subgroups in this autjugacy class$60$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image$C_2^3:\GL(2,4)$