Properties

Label 2880.gn.3.a1
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4\times A_5$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: \(3\)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(6,7)(8,9), (6,7)(12,13), (1,2)(3,4)(10,11)(12,13), (2,5,4)(10,11), (8,9), (10,11)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), maximal, a semidirect factor, nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $C_2^4:\GL(2,4)$
Order: \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times S_4\times S_5$, of order \(17280\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_5\times A_8$, of order \(2419200\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 5^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3^2\times S_5$, of order \(4320\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$\GL(2,4)$, of order \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^4:\GL(2,4)$
Complements:$C_3$ $C_3$
Minimal over-subgroups:$C_2^4:\GL(2,4)$
Maximal under-subgroups:$C_2^3\times A_5$$C_2^3\times A_5$$C_2^3\times A_5$$A_4\times C_2^4$$C_2^3\times D_{10}$$C_2^3\times D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4\times A_5$