Properties

Label 2880.gn.960.c1
Order $ 3 $
Index $ 2^{6} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(3\)
Generators: $\langle(1,3,5)(6,9,12)(7,8,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_2^4:\GL(2,4)$
Order: \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times S_4\times S_5$, of order \(17280\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_6^2$
Normalizer:$C_6^2$
Normal closure:$A_4\times A_5$
Core:$C_1$
Minimal over-subgroups:$A_4$$A_4$$A_4$$C_3^2$$C_6$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$80$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^4:\GL(2,4)$