Properties

Label 288.85.72.a1.a1
Order $ 2^{2} $
Index $ 2^{3} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(2\)
Generators: $b^{2}c^{18}, c^{18}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), stem, a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_4^2:D_9$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times D_{18}$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Outer Automorphisms: $C_3\times S_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_9.(C_2^5\times C_6).C_2^3$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4^2:D_9$
Normalizer:$C_4^2:D_9$
Minimal over-subgroups:$C_2\times C_6$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2^3$$C_2^3$$C_2\times C_4$$C_2\times C_4$
Maximal under-subgroups:$C_2$$C_2$$C_2$

Other information

Möbius function$0$
Projective image$C_2\times D_{18}$