Subgroup ($H$) information
| Description: | $C_2$ |
| Order: | \(2\) |
| Index: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Exponent: | \(2\) |
| Generators: |
$b^{2}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, simple, and rational.
Ambient group ($G$) information
| Description: | $C_4^2:D_9$ |
| Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $D_{36}:C_2$ |
| Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Automorphism Group: | $C_2\times D_{36}:C_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| Outer Automorphisms: | $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_9.(C_2^5\times C_6).C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
| $\operatorname{res}(S)$ | $C_1$, of order $1$ |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_4^2:D_9$ | ||||
| Normalizer: | $C_4^2:D_9$ | ||||
| Minimal over-subgroups: | $C_6$ | $C_2^2$ | $C_2^2$ | $C_2^2$ | $C_4$ |
| Maximal under-subgroups: | $C_1$ | ||||
| Autjugate subgroups: | 288.85.144.b1.b1 |
Other information
| Möbius function | $0$ |
| Projective image | $D_{36}:C_2$ |