Properties

Label 288.398.8.b1.a1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_{12}$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{2}, b, d^{2}, a^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $A_4:C_{24}$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3\times C_{12}$
Normalizer:$C_3:C_{24}$
Normal closure:$C_{12}\times A_4$
Core:$C_{12}$
Minimal over-subgroups:$C_{12}\times A_4$$C_3:C_{24}$
Maximal under-subgroups:$C_3\times C_6$$C_{12}$$C_{12}$$C_{12}$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$1$
Projective image$S_4$