Subgroup ($H$) information
Description: | $C_3\times C_{12}$ |
Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$a^{2}, b, d^{2}, a^{4}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $A_4:C_{24}$ |
Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^3\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$\operatorname{Aut}(H)$ | $C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $4$ |
Möbius function | $1$ |
Projective image | $S_4$ |