Properties

Label 288.398.3.b1.a1
Order $ 2^{5} \cdot 3 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:C_{24}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(3\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, a^{4}, d^{3}, c, d^{2}, a^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $A_4:C_{24}$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(S)$$C_2^5$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$C_2^2:C_{24}$
Normal closure:$A_4:C_{24}$
Core:$C_2^2\times C_{12}$
Minimal over-subgroups:$A_4:C_{24}$
Maximal under-subgroups:$C_2^2\times C_{12}$$C_2\times C_{24}$$C_2\times C_{24}$$C_2^2:C_8$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$S_4$