Properties

Label 288.376.9.a1.a1
Order $ 2^{5} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4.D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, c^{3}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4.\SOPlus(4,2)$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2:C_2^3$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2\wr D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(S)$$D_4^2$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^2:C_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_4.D_4$
Normal closure:$C_4.\SOPlus(4,2)$
Core:$C_4$
Minimal over-subgroups:$C_4.\SOPlus(4,2)$
Maximal under-subgroups:$C_2\times Q_8$$\OD_{16}$$\OD_{16}$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$-1$
Projective image$S_3^2:C_4$