Properties

Label 28449792.b.6.B
Order $ 2^{9} \cdot 3^{3} \cdot 7^{3} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^9:(C_7^3:\He_3)$
Order: \(4741632\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\langle(1,3)(2,8)(4,6)(5,7)(9,10)(11,16)(12,15)(13,14)(17,21)(18,22)(19,23)(20,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is the commutator subgroup (hence characteristic and normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^9.C_7^3:C_3\wr S_3$
Order: \(28449792\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 7^{3} \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.C_7^3:C_3\wr S_3$, of order \(28449792\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 7^{3} \)
$\operatorname{Aut}(H)$ $C_2^9.C_7^3:C_3\wr S_3$, of order \(28449792\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 7^{3} \)
$W$$C_2^9.C_7^3:C_3\wr S_3$, of order \(28449792\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 7^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^9.C_7^3:C_3\wr S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^9.C_7^3:C_3\wr S_3$