Properties

Label 28449792.b.54.D
Order $ 2^{9} \cdot 3 \cdot 7^{3} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(526848\)\(\medspace = 2^{9} \cdot 3 \cdot 7^{3} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: not computed
Generators: $\langle(17,22)(18,21)(19,20)(23,24), (17,23)(18,20)(19,21)(22,24), (1,6)(2,5)(3,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian, solvable, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_2^9.C_7^3:C_3\wr S_3$
Order: \(28449792\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 7^{3} \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.C_7^3:C_3\wr S_3$, of order \(28449792\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 7^{3} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2^6.C_7^2.F_8.C_3^3.C_2$
Normal closure:$C_2^9.C_7^3.C_3^2$
Core:$C_2^6.C_7^2\times F_8$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^9.C_7^3:C_3\wr S_3$