Properties

Label 279936000.b.270._.G
Order $ 2^{9} \cdot 3^{4} \cdot 5^{2} $
Index $ 2 \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_6^2.D_4$
Order: \(1036800\)\(\medspace = 2^{9} \cdot 3^{4} \cdot 5^{2} \)
Index: \(270\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\langle(1,4)(2,6,3,5), (7,12)(9,11)(14,16)(15,18), (1,6)(3,5)(7,12)(8,10), (7,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $A_6^3.S_3$
Order: \(279936000\)\(\medspace = 2^{10} \cdot 3^{7} \cdot 5^{3} \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_6\wr C_3.C_2^3$, of order \(1119744000\)\(\medspace = 2^{12} \cdot 3^{7} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_2^2\times A_6^2.C_2^3$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$135$
Möbius function not computed
Projective image not computed