All subgroups of index up to 32000 (order at least 8748) are shown, as well as all normal subgroups of any index.
Order 279936000: $A_6^3.S_3$ |
Order 139968000: $A_6\wr C_3$ |
Order 93312000: $A_6.A_6^2.C_2$ |
Order 46656000: $A_6.A_6.A_6$ |
Order 15552000: $A_5.A_6^2.C_2$ x 2 |
Order 9331200: $C_3:S_3.C_2.A_6^2.C_2$ |
Order 7776000: $A_5\times A_6^2$ x 2 |
Order 6220800: $S_4\times A_6^2.C_2$, $S_4.A_6^2.C_2$ |
Order 4665600: $A_6^2.S_3^2$ x 2, $A_6^2\times C_3:S_3.C_2$ |
Order 3110400: $A_4.A_6^2.C_2$ x 4, $A_6^2\times S_4$ x 2 |
Order 2592000: $A_6.A_5^2.C_2$ x 2, $D_5.A_6^2.C_2$ |
Order 2332800: $(C_3\times A_6)\wr C_2$ x 2, $C_3:S_3.A_6.A_6$ |
Order 2073600: $D_4.A_6^2.C_2$ |
Order 1555200: $A_4.A_6.A_6$ x 2, $A_6^2.D_6$ x 2 |
Order 1296000: $A_5^3:S_3$ x 2, $A_6^2\times D_5$, $A_6.A_5.A_5$, $A_5^2\times A_6$, $A_5.A_5.A_6$ |
Order 1166400: $C_3^2.A_6.A_6$ |
Order 1036800: $C_4.A_6^2.C_2$ x 2, $C_2^2.A_6^2.C_2$ x 2, $A_6^2.D_4$ x 2, $D_4.A_6.A_6$ |
Order 933120: $C_3^4.C_4^2.A_6.C_2$ |
Order 777600: $S_3\times A_6^2$ x 2, $A_6^2:C_6$ x 2, $A_6^2:S_3$ x 2, $C_3:S_3.C_2.A_6.A_5$, $C_3:S_3.C_2.A_5.A_6$ |
Order 648000: $A_5\wr C_3$ x 2, $C_5.A_6.A_6$ |
Order 518400: $S_4\times A_5\times A_6$ x 4, $A_6^2:C_2^2$ x 3, $C_2^2.A_6.A_6$ x 2, $C_4.A_6.A_6$, $A_6^2:C_4$ |
Order 466560: $C_3^4:C_2^2.C_2.A_6.C_2$ x 2, $C_3^4.C_4^2.A_6$ |
Order 432000: $A_5^2:S_5$ x 4 |
Order 414720: $S_4^2.S_6$ x 2 |
Order 388800: $C_3:S_3.A_5.A_6$ x 2, $C_3\times A_6^2$ x 2 |
Order 311040: $(C_3:S_3\times S_4).C_2.A_6$ x 2 |
Order 279936: $C_3^6:(C_4^2:D_{12})$ |
Order 259200: $A_4\times A_5\times A_6$ x 4, $C_3:S_3.C_2.A_5^2.C_2$ x 2, $A_6.A_6.C_2$ x 2, $A_6\wr C_2$ x 2, $C_2\times A_6^2$, $A_6:S_6$, $A_6\times S_6$ |
Order 233280: $C_3^2:(C_3:S_3.C_2).A_6.C_2$ x 4, $C_3^4:C_2^2.C_2.A_6$ x 2, $C_3^4:C_2^2.A_6.C_2$ |
Order 216000: $A_5^3$ x 4, $A_6\times A_5\times D_5$, $A_5\times A_6\times D_5$ |
Order 207360: $A_6.S_4^2$ x 3, $A_4^2:(C_2\times S_6)$ x 2, $(A_4^2\times A_6):C_4$ x 2 |
Order 194400: $C_3^2.A_6.A_5$, $C_3^2.A_5.A_6$ |
Order 172800: $S_4\times \SOPlus(4,4)$ x 4, $D_4\times A_5\times A_6$ x 2 |
Order 155520: $C_3^4.C_4^2.S_5$ x 2, $(C_3^2\times A_4):C_4.A_6$ x 2, $(C_3:S_3\times S_4).A_6$ x 2, $(A_4\times C_3:S_3.C_2).A_6$ x 2 |
Order 139968: $(C_3:S_3)^3.S_4$ x 2, $C_3^6:C_4\wr C_3$ |
Order 129600: $A_6^2$ x 5, $S_3\times A_5\times A_6$ x 4, $A_5^2:S_3^2$ x 4, $C_3:S_3.C_2.A_5.A_5$ x 3, $(D_5\times C_3:S_3.C_2).A_6$ |
Order 116640: $C_3^2:(C_3:S_3.C_2).A_6$ x 2, $C_3:(C_3^3:C_2).A_6.C_2$ x 2, $C_3^4:C_2^2.A_6$, $C_3^3:(C_3:C_4).A_6$, $(C_3^2\times C_3:S_3.C_2).A_6$ |
Order 108000: $(C_5\times A_5).A_6$ x 2 |
Order 103680: $A_4\times S_4\times A_6$ x 4, $A_6\times \PSOPlus(4,3)$ x 3, $A_4^2:S_6$ x 2, $(D_4\times C_3:S_3.C_2).A_6$ |
Order 93312: $C_3^6.C_2.C_2^3.C_2^3$ |
Order 86400: $S_4\times A_5^2$ x 6, $A_5^2:S_4$ x 4, $A_4\times \SOPlus(4,4)$ x 4, $C_2^2\times A_5\times A_6$ x 4, $C_4\times A_5\times A_6$ x 2, $D_5\times S_4\times A_6$ x 2 |
Order 82944: $A_4^3.(C_2\times S_4)$ x 2 |
Order 77760: $C_3^4:C_2^2.C_2.S_5$ x 4, $C_3^4.C_4^2.A_5$ x 2, $C_3^2:S_4.A_6$ x 2, $(C_3^2\times S_4).A_6$ x 2, $(A_4\times C_3:S_3).A_6$ x 2, $C_3^2:C_4\times S_3\times A_6$ x 2 |
Order 72000: $A_5^2:F_5$ x 2, $D_5^2.A_6.C_2$ |
Order 69984: $C_3^5:D_6.S_4$ x 2, $C_3^5:D_6:D_{12}$, $C_3^6:(C_4^2:C_6)$ |
Order 69120: $S_4^2:S_5$ x 4, $D_4\times S_4\times A_6$ x 2, $C_2^2:S_4:S_6$ x 2 |
Order 64800: $A_6\times \GL(2,4)$ x 4, $\GL(2,4)\wr C_2$ x 4, $C_3:S_3.A_5.A_5$ x 3, $C_3^2:(C_5:C_4).A_6$, $(D_5\times C_3:S_3).A_6$, $(C_5\times C_3:S_3.C_2).A_6$ |
Order 62208: $C_3^4.A_4.C_4^2.C_2^2$ x 2 |
Order 58320: $C_3^4.A_6.C_2$, $C_3:(C_3^3:C_2).A_6$, $(C_3^2\times C_3:S_3).A_6$ |
Order 57600: $D_4\times \SOPlus(4,4)$ x 2 |
Order 51840: $C_3^2:C_4\times S_4\times A_5$ x 4, $S_3\times S_4\times A_6$ x 4, $A_4^2\times A_6$ x 3, $C_3:S_3.D_4.A_6$ x 2, $(C_2^2\times C_3:S_3.C_2).A_6$ x 2, $(D_4\times C_3:S_3).A_6$, $(C_4\times C_3:S_3.C_2).A_6$, $(C_3\times C_{12}):C_4.A_6$ |
Order 46656: $C_3^4:C_4^2:S_3^2$ x 2, $C_3^6.C_4^3$, $C_3^6.C_4:\OD_{16}$, $C_3^6.C_4.C_2^3.C_2$, $C_3^6.C_4.C_2.C_2^3$, $C_3^6.C_2^3.C_2^3$ |
Order 46080: $D_4^2:S_6$ |
Order 43200: $A_4\times A_5^2$ x 6, $A_5^2:D_6$ x 4, $A_5:S_6$ x 4, $A_5\times S_6$ x 2, $S_5\times A_6$ x 2, $D_5\times A_4\times A_6$ x 2, $C_5:S_4\times A_6$ x 2, $C_5\times S_4\times A_6$ x 2, $A_6.S_5$ x 2, $A_6:S_5$ x 2, $C_2\times A_5\times A_6$ x 2 |
Order 41472: $S_4^2:\SOPlus(4,2)$ x 2, $S_4\wr C_3$ x 2, $A_4^3:S_4$ x 2, $A_4^3:S_4$ x 2 |
Order 38880: $C_3^4:C_2^2.C_2.A_5$ x 3, $C_3^4:C_2^2.S_5$ x 2, $C_3^4.C_4:S_5$ x 2, $C_3^4.A_5:Q_8$ x 2, $C_3^4.A_5:C_8$ x 2, $C_3^4.(C_4\times S_5)$ x 2, $(C_3^2\times A_4).A_6$ x 2, $C_3^3:C_4\times A_6$ x 2, $C_3^2:(S_3\times S_6)$ x 2, $C_3:S_3^2\times A_6$ x 2, $C_3^2:C_{12}\times A_6$ x 2, $C_3:S_3.A_5\times C_3:S_3.C_2$ |
Order 36000: $D_5\times A_5^2$ x 3, $C_5:D_5.A_6.C_2$ x 2, $D_5^2.A_6$ |
Order 34992: $C_3^6.(C_2\times S_4)$ x 2, $C_3^6.(C_4\times A_4)$, $C_3^5:D_6.A_4$ |
Order 34560: $A_5\times S_4^2$ x 6, $A_4^2:(C_2\times S_5)$ x 4, $(A_5\times A_4^2):C_4$ x 4, $A_6\times \GL(2,\mathbb{Z}/4)$ x 4, $C_2^2\times S_4\times A_6$ x 4, $C_2^2:S_4\times A_6$ x 3, $D_4\times A_4\times A_6$ x 2, $C_4\times S_4\times A_6$ x 2, $(C_2^2\times A_6):S_4$ x 2, $(C_2^2\times S_6):A_4$ x 2, $C_4:S_4\times A_6$ x 2 |
Order 32400: $C_3^2.A_5.A_5$ x 3, $C_5\times C_3:S_3.A_6$, $C_3:D_{15}.A_6$, $(C_3^2\times D_5).A_6$ |
Order 31104: $C_3^4.A_4.C_4\wr C_2$ x 6, $C_3^4.A_4.C_4.C_2^3$ x 2, $C_3^4.(C_4^2\times A_4).C_2$ x 2, $A_4.C_3^4.C_2^3.C_2^2$ x 2, $C_3^4.A_4.C_2.C_2^4$, $C_3^4.(D_4\times S_4).C_2$ |
Order 29160: $C_3^4.A_6$ |
Order 28800: $A_5^2:D_4$ x 4, $A_5^2:C_2^3$ x 4, $D_4\times A_5^2$ x 3, $C_4\times \SOPlus(4,4)$ x 2, $A_5^2:D_4$ x 2, $D_4\times D_5\times A_6$ |
Order 27648: $S_4^3:C_2$ x 4 |
Order 25920: $C_3:S_4\times A_6$ x 8, $C_6^2:\GL(2,4):C_4$ x 4, $C_6^2:C_{12}\times A_5$ x 4, $S_4\times \GL(2,4):S_3$ x 4, $C_3\times S_4\times A_6$ x 4, $S_3\times A_4\times A_6$ x 4, $C_2\times C_3^2:C_4\times A_6$ x 4, $C_6^2:C_2.A_6$ x 2, $C_3:S_3.C_2.A_6.C_2$ x 2, $(C_2^2\times C_3:S_3).A_6$ x 2, $A_6:\SOPlus(4,2)$ x 2, $S_3^2:S_6$ x 2, $C_3^4.C_{20}.C_4^2$, $C_3:D_{12}.A_6$, $(C_4\times C_3:S_3).A_6$, $(C_3^2\times D_4).A_6$, $C_3^2:C_4\times S_6$, $A_6\times \SOPlus(4,2)$, $A_6:F_9$, $A_6:\PSU(3,2)$ |
Order 23328: $C_3^6.C_4\wr C_2$ x 4, $C_3^6.C_2^3.C_2^2$ x 3, $C_3^6.C_4:C_8$ x 2, $C_3^4:D_{12}:D_6$ x 2, $C_3^6.C_4^2:C_2$ x 2, $C_3^5:(S_3\times \OD_{16})$ x 2, $C_3^6:C_4\wr C_2$ x 2, $C_3^4:C_{12}\wr C_2$ x 2, $C_3^6.C_4:Q_8$, $C_3^6.C_4:D_4$, $C_3^6.C_2^2:D_4$, $C_3^6.(C_4\times D_4)$, $C_3^6.C_4:D_4$, $C_3^6:(C_4\times D_4)$ |
Order 23040: $C_2^4:(C_2\times S_6)$ x 2, $(C_2^4\times A_6):C_4$ x 2, $D_4^2\times A_6$, $C_4^2:(C_2\times S_6)$, $(C_4^2\times A_6):C_4$ |
Order 21600: $A_5\times A_6$ x 16, $S_3\times A_5^2$ x 6, $A_5^2:S_3$ x 4, $A_5^2:C_6$ x 4, $(D_5\times C_3:S_3.C_2).A_5$ x 2, $S_3\times D_5\times A_6$ x 2, $C_5\times A_4\times A_6$ x 2 |
Order 20736: $A_4^2:S_3^2:C_4$ x 4, $S_4^2:S_3^2$ x 4, $C_3^2:C_4\times S_4^2$ x 3, $A_4^3:A_4$ x 2, $A_4^3:D_6$ x 2, $\PSOPlus(4,3).\SOPlus(4,2)$ x 2, $A_4^2:S_3^2:C_2^2$ x 2, $C_3^4.(C_2\times C_4^2).C_2^3$ |
Order 19440: $C_3^4.(C_4\times A_5)$ x 8, $C_3^2:S_3\times A_6$ x 5, $C_3^4:C_2^2.A_5$ x 2, $C_3^4.A_5:C_4$ x 2, $C_3^4.(C_2\times S_5)$ x 2, $C_3^3:S_6$ x 2, $C_3^3:S_6$ x 2, $S_3\times C_3^2\times A_6$ x 2, $C_3^2:C_6\times A_6$ x 2 |
Order 18000: $C_5\times A_5^2$ x 3, $C_5^2.A_6.C_2$, $C_5\times D_5.A_6$, $C_5:D_5\times A_6$ |
Order 17496: $C_3^6.S_4$ x 2, $C_3^6.D_{12}$, $C_3^6.(C_2\times A_4)$ |
Order 17280: $C_2\times S_4\times A_6$ x 8, $A_4\times S_4\times A_5$ x 8, $A_5\times \PSOPlus(4,3)$ x 6, $A_4^2:S_5$ x 4, $S_4\times S_6$ x 4, $C_2^2\times A_4\times A_6$ x 4, $C_2^2:A_4\times A_6$ x 3, $A_6.C_2\times S_4$ x 2, $S_4\times \PGL(2,9)$ x 2, $\GL(2,4):D_{12}:C_4$ x 2, $C_4\times A_4\times A_6$ x 2, $A_4:C_4\times A_6$ x 2, $S_3\times D_4\times A_6$ x 2 |
Order 16200: $(C_3\times C_{15}).A_6$ |
Order 15552: $C_3^4.A_4.D_4.C_2$ x 6, $C_3^4.(D_4\times S_4)$ x 4, $A_4.C_3^4.C_4^2$ x 3, $C_3^4.Q_8:S_4$ x 2, $C_3^4.C_8:S_4$ x 2, $C_3^4.A_4.\OD_{16}$ x 2, $C_3^4.A_4.D_4:C_2$ x 2, $C_3^4.A_4.C_4^2$ x 2, $C_3^4.(Q_8\times S_4)$ x 2, $C_3^4.(A_4\times \OD_{16})$ x 2, $C_2^2.C_3^5.C_2.C_2^3$ x 2, $A_4.C_3^4.C_2.C_2^3$ x 2, $C_3^4:C_4^2:D_6$ x 2, $C_6^2.C_3^3.C_4^2$, $C_6^2.C_3^3.C_2^3.C_2$, $C_6^2.(S_3\times F_9)$, $C_3^4.(D_4\times A_4).C_2$, $C_3^4.(A_4\times D_4:C_2)$, $A_4.C_3^4.C_4.C_2^2$, $A_4.C_3^4.C_2^3.C_2$ |
Order 14400: $C_2^2\times A_5^2$ x 6, $A_5^2:C_2^2$ x 6, $D_5\times S_4\times A_5$ x 4, $C_4\times A_5^2$ x 3, $C_2\times D_{10}\times A_6$ x 2, $C_5:D_4\times A_6$ x 2, $A_5^2:C_4$ x 2, $C_5\times D_4\times A_6$, $D_{20}\times A_6$, $C_4\times D_5\times A_6$ |
Order 13824: $S_4^3$ x 4, $A_4^3.C_2^3$ x 4, $A_4^2:C_4\times S_4$ x 4, $A_4^2:\GL(2,\mathbb{Z}/4)$ x 4, $A_4^3:D_4$ x 4, $S_4^2:S_4$ x 4, $A_4^3:D_4$ x 4 |
Order 12960: $C_3^2:C_4\times A_6$ x 11, $C_3\times A_4\times A_6$ x 8, $A_6:S_3^2$ x 8, $(C_3^2\times A_6):C_4$ x 5, $S_3^2\times A_6$ x 5, $C_6^2:C_6\times A_5$ x 4, $A_5\times C_3^2:S_4$ x 4, $C_3\times S_4\times \GL(2,4)$ x 4, $\GL(2,4):S_3.D_6$ x 4, $C_6:S_3\times A_6$ x 3, $C_6^2.A_6$ x 2, $A_6:S_3^2$ x 2, $A_6.S_3^2$ x 2, $C_5.C_3^4:C_2^2.C_2^3$, $C_3^4.D_{10}.C_2^3$, $C_3^4.D_5:\OD_{16}$, $C_3^2:C_4.A_6$, $(C_3\times C_{12}).A_6$, $C_3:S_3\times S_6$ |
Order 12000: $D_5^2:S_5$ x 2 |
Order 11664: $C_3^6.C_4^2$ x 7, $C_3^6.C_2^3.C_2$ x 2, $C_3^5.(S_3\times Q_8)$ x 2, $C_3^6:(C_2\times D_4)$ x 2, $C_3^5:C_6.D_4$ x 2, $C_3^6:(C_2\times D_4)$ x 2, $C_3^6:C_4^2$ x 2, $C_3^5:C_6.D_4$ x 2, $C_3^4.(C_4\times S_3^2)$ x 2, $C_3^6:(C_2\times C_8)$ x 2, $C_3^5:D_{12}:C_2$ x 2, $C_3^4:D_{12}:C_6$ x 2, $C_3^4:D_{12}:S_3$ x 2, $C_3^5:D_4:S_3$ x 2, $C_3^6:\OD_{16}$ x 2, $C_3^6:\OD_{16}$ x 2, $C_3^6.C_4:C_4$, $C_3^6.C_2.C_2^3$, $C_3^6:(C_2^2\times C_4)$, $C_3^6.(C_2\times D_4)$, $C_3^6.C_4:C_4$ |
Order 11520: $D_4\times S_4\times A_5$ x 4, $(C_2^2\times S_5):S_4$ x 4, $C_2^2\wr C_2\times A_6$ x 3, $C_4:D_4\times A_6$ x 2, $C_2^2\times D_4\times A_6$ x 2, $C_2^4:S_6$ x 2, $(C_2^3\times A_6):C_4$ x 2, $(C_2^2\times S_6):C_4$ x 2, $S_4^2:F_5$ x 2, $(C_2\times D_4).S_6$, $(C_2\times D_4):S_6$, $(C_2\times D_4):S_6$, $C_4^2:S_6$, $C_4:D_4\times A_6$, $C_4\times D_4\times A_6$ |
Order 10800: $A_5\times \GL(2,4)$ x 6, $C_3^2:(C_5:C_4).A_5$ x 2, $(D_5\times C_3:S_3).A_5$ x 2, $(C_5\times C_3:S_3.C_2).A_5$ x 2, $D_{15}\times A_6$ x 2, $C_3\times D_5\times A_6$ x 2, $C_5\times S_3\times A_6$ x 2 |
Order 10368: $C_3:S_3.S_4^2$ x 4, $C_6^2:C_{12}\times S_4$ x 4, $\PSOPlus(4,3).S_3^2$ x 4, $A_4^2:(S_3\times D_6)$ x 4, $(C_3\times A_4^2):D_{12}$ x 4, $(C_3\times S_4)\wr C_2$ x 4, $C_3:S_3.S_4^2$ x 3, $C_6^2:C_{12}:S_4$ x 3, $C_3:S_3\times S_4^2$ x 3, $C_3^4.C_2^4.C_2^3$ x 2, $C_3^4.(C_4\times C_4:C_4).C_2$ x 2, $C_3^4.(C_2^3\times C_4).C_2^2$ x 2, $C_3^4.(C_2\times C_4^2).C_2^2$ x 2, $C_3^4.(C_2\times C_4).C_2^4$ x 2, $A_4^2:\SOPlus(4,2)$ x 2, $A_4^2:\SOPlus(4,2)$ x 2, $C_3^4:C_4^2:D_4$ x 2, $A_4^3:S_3$ x 2, $A_4\wr S_3$ x 2, $A_4^3:C_6$ x 2, $C_3^4.C_4^3.C_2$, $C_3^4.C_4^2.C_2^3$, $C_3^4.(C_2\times C_4\wr C_2).C_2$ |
Order 9720: $C_3^3\times A_6$ x 5, $C_3^4.(C_2\times A_5)$ x 4, $C_3^4.S_5$ x 2 |
Order 9216: $A_4^2:D_4^2$ x 2 |
Order 9000: $C_5^2.A_6$ |
Order 8748: $C_3^6.D_6$ x 2, $C_3^6.A_4$, $C_3^6.C_{12}$ |
Order 1: $C_1$ |