Subgroup ($H$) information
| Description: | $A_6^2.D_4$ | 
| Order: | \(1036800\)\(\medspace = 2^{9} \cdot 3^{4} \cdot 5^{2} \) | 
| Index: | \(270\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \) | 
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
| Generators: | $\langle(8,9)(10,11)(13,14,18,15)(16,17), (14,16)(15,18), (1,6)(3,5)(8,10)(9,11) \!\cdots\! \rangle$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian and nonsolvable.
Ambient group ($G$) information
| Description: | $A_6^3.S_3$ | 
| Order: | \(279936000\)\(\medspace = 2^{10} \cdot 3^{7} \cdot 5^{3} \) | 
| Exponent: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $A_6\wr C_3.C_2^3$, of order \(1119744000\)\(\medspace = 2^{12} \cdot 3^{7} \cdot 5^{3} \) | 
| $\operatorname{Aut}(H)$ | $C_2^2\times A_6^2.C_2^3$ | 
| $\card{W}$ | not computed | 
Related subgroups
| Centralizer: | not computed | 
| Normalizer: | not computed | 
| Normal closure: | not computed | 
| Core: | not computed | 
| Autjugate subgroups: | Subgroups are not computed up to automorphism. | 
Other information
| Number of subgroups in this conjugacy class | $135$ | 
| Möbius function | not computed | 
| Projective image | not computed | 
