Properties

Label 279936.kq.384.A
Order $ 3^{6} $
Index $ 2^{7} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^6$
Order: \(729\)\(\medspace = 3^{6} \)
Index: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(3\)
Generators: $\langle(1,14,5)(3,10,17)(6,16,15), (1,5,14)(2,9,7)(4,13,12)(6,15,16)(8,18,11), (2,9,7)(3,10,17)(6,16,15)(8,18,11), (6,16,15), (2,7,9)(8,11,18), (2,9,7)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_3^6.C_2^5:A_4$
Order: \(279936\)\(\medspace = 2^{7} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^5:A_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^6.C_2^6.C_3.S_3$, of order \(73728\)\(\medspace = 2^{13} \cdot 3^{2} \)
Outer Automorphisms: $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.C_2^4.A_4^2.C_2^3$, of order \(13436928\)\(\medspace = 2^{11} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ $\GL(6,3)$, of order \(84129611558952960\)\(\medspace = 2^{13} \cdot 3^{15} \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13^{2} \)
$W$$C_2^3:A_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_3^4\times C_6^2$
Normalizer:$C_3^6.C_2^5:A_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^6.C_2^5:A_4$