Properties

Label 27744.ba.544._.A
Order $ 3 \cdot 17 $
Index $ 2^{5} \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{51}$
Order: \(51\)\(\medspace = 3 \cdot 17 \)
Index: \(544\)\(\medspace = 2^{5} \cdot 17 \)
Exponent: \(51\)\(\medspace = 3 \cdot 17 \)
Generators: $\left(\begin{array}{rr} 309 & 0 \\ 0 & 364 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 0 & 82 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{136}.D_{102}$
Order: \(27744\)\(\medspace = 2^{5} \cdot 3 \cdot 17^{2} \)
Exponent: \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $\OD_{16}:C_{34}$
Order: \(544\)\(\medspace = 2^{5} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Automorphism Group: $C_2^2\times C_{16}\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Outer Automorphisms: $C_{48}:C_2^3$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{51}:((C_2\times C_{16}^2).C_2^5)$
$\operatorname{Aut}(H)$ $C_2\times C_{16}$, of order \(32\)\(\medspace = 2^{5} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed