Properties

Label 27744.ba
Order \( 2^{5} \cdot 3 \cdot 17^{2} \)
Exponent \( 2^{3} \cdot 3 \cdot 17 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \cdot 17 \)
$\card{Z(G)}$ \( 2^{3} \cdot 17 \)
$\card{\Aut(G)}$ \( 2^{14} \cdot 3 \cdot 17 \)
$\card{\mathrm{Out}(G)}$ \( 2^{12} \)
Perm deg. $53$
Trans deg. $816$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 53 | (2,4)(3,7)(11,13)(12,14)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(52,53), (1,2,5,11,8,4,9,13)(3,6,12,15,7,10,14,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,37,39,41,43,45,47,49,50,48,46,44,42,40,38,36)(51,52,53), (1,3,8,7)(2,6,4,10)(5,12,9,14)(11,15,13,16)(34,36,38,40,42,44,46,48,50,49,47,45,43,41,39,37,35)(51,53,52) >;
 
Copy content gap:G := Group( (2,4)(3,7)(11,13)(12,14)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(52,53), (1,2,5,11,8,4,9,13)(3,6,12,15,7,10,14,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,37,39,41,43,45,47,49,50,48,46,44,42,40,38,36)(51,52,53), (1,3,8,7)(2,6,4,10)(5,12,9,14)(11,15,13,16)(34,36,38,40,42,44,46,48,50,49,47,45,43,41,39,37,35)(51,53,52) );
 
Copy content sage:G = PermutationGroup(['(2,4)(3,7)(11,13)(12,14)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(52,53)', '(1,2,5,11,8,4,9,13)(3,6,12,15,7,10,14,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,37,39,41,43,45,47,49,50,48,46,44,42,40,38,36)(51,52,53)', '(1,3,8,7)(2,6,4,10)(5,12,9,14)(11,15,13,16)(34,36,38,40,42,44,46,48,50,49,47,45,43,41,39,37,35)(51,53,52)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1971492933454177053493080913203454053425215362786255082084273114513866767,27744)'); a = G.1; b = G.2; c = G.5;
 

Group information

Description:$C_{136}.D_{102}$
Order: \(27744\)\(\medspace = 2^{5} \cdot 3 \cdot 17^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_{51}:((C_2\times C_{16}^2).C_2^5)$, of order \(835584\)\(\medspace = 2^{14} \cdot 3 \cdot 17 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 5, $C_3$, $C_{17}$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 17 24 34 51 68 102 136 204 408
Elements 1 207 2 208 6 416 8 288 16 4128 576 4416 1728 8832 2304 4608 27744
Conjugacy classes   1 4 1 5 3 10 4 152 8 472 288 624 864 1248 1152 2304 7140
Divisions 1 4 1 4 2 4 2 10 2 30 10 22 28 22 20 20 182
Autjugacy classes 1 3 1 3 2 3 2 3 2 7 3 7 6 7 6 6 62

Minimal presentations

Permutation degree:$53$
Transitive degree:$816$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: $\langle a, b, c \mid a^{2}=b^{102}=c^{136}=[b,c]=1, b^{a}=b^{53}c^{52}, c^{a}=b^{48}c^{49} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([8, 2, 2, 3, 17, 2, 2, 2, 17, 171425, 41, 509378, 90, 261891, 403684, 116, 968837, 141, 695526, 166, 1576711]); a,b,c := Explode([G.1, G.2, G.5]); AssignNames(~G, ["a", "b", "b2", "b6", "c", "c2", "c4", "c8"]);
 
Copy content gap:G := PcGroupCode(1971492933454177053493080913203454053425215362786255082084273114513866767,27744); a := G.1; b := G.2; c := G.5;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1971492933454177053493080913203454053425215362786255082084273114513866767,27744)'); a = G.1; b = G.2; c = G.5;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1971492933454177053493080913203454053425215362786255082084273114513866767,27744)'); a = G.1; b = G.2; c = G.5;
 
Permutation group:Degree $53$ $\langle(2,4)(3,7)(11,13)(12,14)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 53 | (2,4)(3,7)(11,13)(12,14)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(52,53), (1,2,5,11,8,4,9,13)(3,6,12,15,7,10,14,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,37,39,41,43,45,47,49,50,48,46,44,42,40,38,36)(51,52,53), (1,3,8,7)(2,6,4,10)(5,12,9,14)(11,15,13,16)(34,36,38,40,42,44,46,48,50,49,47,45,43,41,39,37,35)(51,53,52) >;
 
Copy content gap:G := Group( (2,4)(3,7)(11,13)(12,14)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(52,53), (1,2,5,11,8,4,9,13)(3,6,12,15,7,10,14,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,37,39,41,43,45,47,49,50,48,46,44,42,40,38,36)(51,52,53), (1,3,8,7)(2,6,4,10)(5,12,9,14)(11,15,13,16)(34,36,38,40,42,44,46,48,50,49,47,45,43,41,39,37,35)(51,53,52) );
 
Copy content sage:G = PermutationGroup(['(2,4)(3,7)(11,13)(12,14)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(52,53)', '(1,2,5,11,8,4,9,13)(3,6,12,15,7,10,14,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,37,39,41,43,45,47,49,50,48,46,44,42,40,38,36)(51,52,53)', '(1,3,8,7)(2,6,4,10)(5,12,9,14)(11,15,13,16)(34,36,38,40,42,44,46,48,50,49,47,45,43,41,39,37,35)(51,53,52)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 21 & 0 \\ 0 & 236 \end{array}\right), \left(\begin{array}{rr} 32 & 0 \\ 0 & 294 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{409})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(409) | [[21, 0, 0, 236], [32, 0, 0, 294], [0, 1, 1, 0]] >;
 
Copy content gap:G := Group([[[ Z(409), 0*Z(409) ], [ 0*Z(409), Z(409)^5 ]], [[ Z(409)^2, 0*Z(409) ], [ 0*Z(409), Z(409)^406 ]], [[ 0*Z(409), Z(409)^0 ], [ Z(409)^0, 0*Z(409) ]]]);
 
Copy content sage:MS = MatrixSpace(GF(409), 2, 2) G = MatrixGroup([MS([[21, 0], [0, 236]]), MS([[32, 0], [0, 294]]), MS([[0, 1], [1, 0]])])
 
Direct product: not computed
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_{408}$ . $D_{34}$ (2) $D_{204}$ . $C_{68}$ $C_{136}$ . $D_{102}$ (2) $C_{68}$ . $(S_3\times C_{68})$ all 83

Elements of the group are displayed as matrices in $\GL_{2}(\F_{409})$.

Homology

Abelianization: $C_{2}^{2} \times C_{68} \simeq C_{2}^{2} \times C_{4} \times C_{17}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 3752 subgroups in 424 conjugacy classes, 110 normal (82 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{136}$ $G/Z \simeq$ $D_{102}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{102}$ $G/G' \simeq$ $C_2^2\times C_{68}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_4$ $G/\Phi \simeq$ $C_{17}^2:(C_2^2\times S_3)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{34}\times C_{408}$ $G/\operatorname{Fit} \simeq$ $C_2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{136}.D_{102}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{17}\times C_{102}$ $G/\operatorname{soc} \simeq$ $C_2^2\times C_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $\OD_{16}:C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
17-Sylow subgroup: $P_{ 17 } \simeq$ $C_{17}^2$

Subgroup diagram and profile

Series

Derived series $C_{136}.D_{102}$ $\rhd$ $C_{102}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_{136}.D_{102}$ $\rhd$ $C_{34}\times C_{408}$ $\rhd$ $C_{34}\times C_{204}$ $\rhd$ $C_{17}\times C_{204}$ $\rhd$ $C_{17}\times C_{102}$ $\rhd$ $C_{102}$ $\rhd$ $C_{51}$ $\rhd$ $C_{17}$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_{136}.D_{102}$ $\rhd$ $C_{102}$ $\rhd$ $C_{51}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_{136}$ $\lhd$ $C_2\times C_{136}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $7140 \times 7140$ character table is not available for this group.

Rational character table

The $182 \times 182$ rational character table is not available for this group.