Properties

Label 27216.a.3.b1.c1
Order $ 2^{4} \cdot 3^{4} \cdot 7 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times {}^2G(2,3)$
Order: \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
Index: \(3\)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Generators: $\langle(4,6,5), (4,5), (5,6)(7,13,11)(8,15,12)(9,10,14), (4,6,5)(7,8,12)(9,10,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $C_3\times S_3\times {}^2G(2,3)$
Order: \(27216\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3^2\times {}^2G(2,3)$, of order \(54432\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3\times {}^2G(2,3)$, of order \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
$W$$S_3\times {}^2G(2,3)$, of order \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3\times S_3\times {}^2G(2,3)$
Complements:$C_3$ $C_3$ $C_3$ $C_3$ $C_3$ $C_3$ $C_3$ $C_3$
Minimal over-subgroups:$C_3\times S_3\times {}^2G(2,3)$
Maximal under-subgroups:$C_3\times {}^2G(2,3)$$S_3\times \SL(2,8)$$\SL(2,8):C_6$$F_8:C_3\times S_3$$C_3^2.S_3^2$$S_3\times F_7$
Autjugate subgroups:27216.a.3.b1.a127216.a.3.b1.b1

Other information

Möbius function$-1$
Projective image$C_3\times S_3\times {}^2G(2,3)$