Properties

Label 27216.a.9072.f1.a1
Order $ 3 $
Index $ 2^{4} \cdot 3^{4} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
Exponent: \(3\)
Generators: $\langle(1,3,2)(7,8,11)(10,13,15)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_3\times S_3\times {}^2G(2,3)$
Order: \(27216\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3^2\times {}^2G(2,3)$, of order \(54432\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3^2\times S_3^2$
Normalizer:$C_3^2\times S_3^2$
Normal closure:${}^2G(2,3)$
Core:$C_1$
Minimal over-subgroups:$C_7:C_3$$A_4$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_6$$C_6$$C_6$
Maximal under-subgroups:$C_1$
Autjugate subgroups:27216.a.9072.f1.b127216.a.9072.f1.c1

Other information

Number of subgroups in this conjugacy class$84$
Möbius function$18$
Projective image$C_3\times S_3\times {}^2G(2,3)$