Properties

Label 27216.a.252.d1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{2} \cdot 3^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times D_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,3,2)(4,5)(7,15)(8,10)(9,14)(11,13), (4,6,5), (1,2,3)(4,5)(7,8,11)(10,13,15), (4,5), (1,3,2)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3\times S_3\times {}^2G(2,3)$
Order: \(27216\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3^2\times {}^2G(2,3)$, of order \(54432\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 7 \)
$\operatorname{Aut}(H)$ $D_6\times \GL(2,3)$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_3^2\times D_6$
Normal closure:$C_3\times S_3\times {}^2G(2,3)$
Core:$C_3\times S_3$
Minimal over-subgroups:$C_{21}:C_6^2$$C_6\times S_3\times A_4$$C_3^2\times S_3^2$
Maximal under-subgroups:$S_3\times C_3^2$$C_3^2\times C_6$$S_3\times C_3^2$$C_6^2$$C_6\times S_3$$C_6\times S_3$$C_6\times S_3$$C_6\times S_3$

Other information

Number of subgroups in this conjugacy class$252$
Möbius function$2$
Projective image$S_3\times {}^2G(2,3)$