Properties

Label 272.23.1.a1.a1
Order $ 2^{4} \cdot 17 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{136}$
Order: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Index: $1$
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Generators: $b^{34}, b^{68}, b^{8}, b^{17}, a$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Fitting subgroup, the radical, a direct factor, a Hall subgroup, elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2\times C_{136}$
Order: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $0$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times D_4\times C_{16}$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{Aut}(H)$ $C_2\times D_4\times C_{16}$, of order \(256\)\(\medspace = 2^{8} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{136}$
Normalizer:$C_2\times C_{136}$
Complements:$C_1$
Maximal under-subgroups:$C_2\times C_{68}$$C_{136}$$C_{136}$$C_2\times C_8$

Other information

Möbius function$1$
Projective image$C_1$