Properties

Label 2700.q.3.a1.a1
Order $ 2^{2} \cdot 3^{2} \cdot 5^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:C_2^2$
Order: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Index: \(3\)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ac^{9}d^{6}, d^{3}, c^{10}, c^{10}d^{10}, b^{3}, c^{3}d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}^2:D_6$
Order: \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_{12}.C_2^3$
$\operatorname{Aut}(H)$ $D_6\times F_5\wr C_2$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$\operatorname{res}(S)$$S_3\times C_5^2:\OD_{16}$, of order \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_{15}:D_{10}$, of order \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{15}^2:C_2^2$
Normal closure:$C_{15}^2:D_6$
Core:$C_{15}^2:C_2$
Minimal over-subgroups:$C_{15}^2:D_6$
Maximal under-subgroups:$C_{15}^2:C_2$$C_{15}\times D_{15}$$C_{15}\times D_{15}$$C_3\times D_5^2$$C_{15}:D_{10}$$C_{15}:D_6$$C_{15}:D_6$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$(C_5\times C_{15}):D_6$