Properties

Label 26873856.ua.256.C
Order $ 2^{4} \cdot 3^{8} $
Index $ 2^{8} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^8:C_4^2$
Order: \(104976\)\(\medspace = 2^{4} \cdot 3^{8} \)
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,9,5)(2,7,6)(3,8,4)(19,24,26)(20,22,27)(21,23,25), (28,30,29)(31,33,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metabelian (hence solvable), and an A-group. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^8:C_2^3.D_4^2:D_4$
Order: \(26873856\)\(\medspace = 2^{12} \cdot 3^{8} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $(C_2^2\times C_8):C_2^3$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2\times D_4^3.D_6$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
Outer Automorphisms: $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^8.C_2.C_4^3.C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_3^8:C_8.D_8^2.\SD_{16}.C_2^2$, of order \(859963392\)\(\medspace = 2^{17} \cdot 3^{8} \)
$\card{W}$\(26873856\)\(\medspace = 2^{12} \cdot 3^{8} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^8:C_2^3.D_4^2:D_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed