Properties

Label 2662000.a.4._.C
Order $ 2^{2} \cdot 5^{3} \cdot 11^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{11}^3:C_{10}^2$
Order: \(665500\)\(\medspace = 2^{2} \cdot 5^{3} \cdot 11^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 7 & 2 & 7 & 7 \\ 3 & 9 & 3 & 8 \\ 9 & 4 & 6 & 5 \\ 5 & 5 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 10 & 10 & 9 & 0 \\ 2 & 10 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 8 & 1 & 2 & 0 \\ 5 & 5 & 8 & 0 \\ 4 & 5 & 3 & 5 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 3 & 2 & 9 & 0 \\ 10 & 10 & 7 & 0 \\ 10 & 10 & 8 & 10 \end{array}\right), \left(\begin{array}{rrrr} 0 & 6 & 1 & 3 \\ 9 & 9 & 6 & 6 \\ 8 & 5 & 3 & 7 \\ 1 & 10 & 6 & 5 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 4 & 5 & 1 & 0 \\ 6 & 6 & 8 & 0 \\ 6 & 6 & 7 & 1 \end{array}\right), \left(\begin{array}{rrrr} 4 & 5 & 2 & 2 \\ 7 & 10 & 3 & 2 \\ 4 & 10 & 3 & 6 \\ 7 & 4 & 4 & 9 \end{array}\right), \left(\begin{array}{rrrr} 4 & 2 & 7 & 10 \\ 8 & 5 & 5 & 7 \\ 0 & 9 & 8 & 9 \\ 3 & 0 & 3 & 9 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{22}:F_{11}^2.C_{10}$
Order: \(2662000\)\(\medspace = 2^{4} \cdot 5^{3} \cdot 11^{3} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(212960000\)\(\medspace = 2^{8} \cdot 5^{4} \cdot 11^{3} \)
$\operatorname{Aut}(H)$ Group of order \(532400000\)\(\medspace = 2^{7} \cdot 5^{5} \cdot 11^{3} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed