| Presentation: |
${\langle a, b, c, d, e \mid a^{10}=b^{10}=c^{110}=d^{11}=e^{22}=[c,e]=[d,e]= \!\cdots\! \rangle}$
|
magma:G := PCGroup([10, 2, 5, 2, 5, 2, 5, 11, 11, 2, 11, 20, 3422702, 4560162, 82, 19563203, 29100413, 106005004, 2427514, 7735524, 2435284, 144, 87432005, 216015, 1471225, 5811635, 355, 135800006, 105016, 8505026, 5950036, 4400007, 1320017, 880027, 88047, 76590008, 16335018, 3339028, 585038, 268, 170200009, 36300019, 7310029, 1245039]); a,b,c,d,e := Explode([G.1, G.3, G.5, G.8, G.9]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "c10", "d", "e", "e2"]);
gap:G := PcGroupCode(1441929371628022358098222723374343869687805798794806844069893513591011977259639750053736786067554403236939999930627285346169658884185602790483894442747765753211321091563508577931413064965554962176854161380114771532019295839250303039909,2662000); a := G.1; b := G.3; c := G.5; d := G.8; e := G.9;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(1441929371628022358098222723374343869687805798794806844069893513591011977259639750053736786067554403236939999930627285346169658884185602790483894442747765753211321091563508577931413064965554962176854161380114771532019295839250303039909,2662000)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.9;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(1441929371628022358098222723374343869687805798794806844069893513591011977259639750053736786067554403236939999930627285346169658884185602790483894442747765753211321091563508577931413064965554962176854161380114771532019295839250303039909,2662000)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.9;
|
| Permutation group: | Degree $42$
$\langle(38,39,40,42,41), (1,2,6,9,4,14,5,3,8,12,11)(7,15,20,10,22,18,17,16,19,21,13) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 42 | (38,39,40,42,41), (1,2,6,9,4,14,5,3,8,12,11)(7,15,20,10,22,18,17,16,19,21,13)(23,24,29,31,26,30,25,28,32,33,27)(38,40,41,39,42), (34,35)(36,37)(38,39,40,42,41), (1,3,9,11,5,6,12,14,2,8,4)(7,18,13,22,21,10,19,20,16,15,17)(23,25,24,28,29,32,31,33,26,27,30)(38,41,42,40,39), (1,4,2,5,14,9,11,6,8,12)(7,10,21,13,15,18,20,16,17,22)(24,29,26,32,30,27,33,28,31,25)(34,35)(36,37)(38,41,42,40,39), (1,5,9,11,2)(3,8,6,14,12)(7,10,16,18,17)(13,21,22,15,19)(24,25,31,28,33,27,30,32,26,29)(36,37), (1,6,4,5,8,11,2,9,14,3,12)(7,19,18,20,13,16,22,15,21,17,10)(23,26,32,24,30,33,29,25,27,31,28)(34,35)(36,37)(38,42,39,41,40), (1,7,9,21,8,20,12,18,3,13)(2,10)(4,15,5,16,6,17,11,19,14,22)(23,27,29,26,33,30,25,31,24,28)(34,36)(35,37)(38,40,41,39,42), (1,6,2,3,4)(5,11,8,12,9)(7,20,15,16,22)(10,17,13,19,21)(23,27,30,29,33)(24,26,32,25,28), (1,2,11,9,5)(3,12,14,6,8)(7,17,15,16,20,19,10,21,22,13,18)(23,28,25,31,30)(24,27,26,32,33)(34,35)(36,37)(38,41,42,40,39) >;
gap:G := Group( (38,39,40,42,41), (1,2,6,9,4,14,5,3,8,12,11)(7,15,20,10,22,18,17,16,19,21,13)(23,24,29,31,26,30,25,28,32,33,27)(38,40,41,39,42), (34,35)(36,37)(38,39,40,42,41), (1,3,9,11,5,6,12,14,2,8,4)(7,18,13,22,21,10,19,20,16,15,17)(23,25,24,28,29,32,31,33,26,27,30)(38,41,42,40,39), (1,4,2,5,14,9,11,6,8,12)(7,10,21,13,15,18,20,16,17,22)(24,29,26,32,30,27,33,28,31,25)(34,35)(36,37)(38,41,42,40,39), (1,5,9,11,2)(3,8,6,14,12)(7,10,16,18,17)(13,21,22,15,19)(24,25,31,28,33,27,30,32,26,29)(36,37), (1,6,4,5,8,11,2,9,14,3,12)(7,19,18,20,13,16,22,15,21,17,10)(23,26,32,24,30,33,29,25,27,31,28)(34,35)(36,37)(38,42,39,41,40), (1,7,9,21,8,20,12,18,3,13)(2,10)(4,15,5,16,6,17,11,19,14,22)(23,27,29,26,33,30,25,31,24,28)(34,36)(35,37)(38,40,41,39,42), (1,6,2,3,4)(5,11,8,12,9)(7,20,15,16,22)(10,17,13,19,21)(23,27,30,29,33)(24,26,32,25,28), (1,2,11,9,5)(3,12,14,6,8)(7,17,15,16,20,19,10,21,22,13,18)(23,28,25,31,30)(24,27,26,32,33)(34,35)(36,37)(38,41,42,40,39) );
sage:G = PermutationGroup(['(38,39,40,42,41)', '(1,2,6,9,4,14,5,3,8,12,11)(7,15,20,10,22,18,17,16,19,21,13)(23,24,29,31,26,30,25,28,32,33,27)(38,40,41,39,42)', '(34,35)(36,37)(38,39,40,42,41)', '(1,3,9,11,5,6,12,14,2,8,4)(7,18,13,22,21,10,19,20,16,15,17)(23,25,24,28,29,32,31,33,26,27,30)(38,41,42,40,39)', '(1,4,2,5,14,9,11,6,8,12)(7,10,21,13,15,18,20,16,17,22)(24,29,26,32,30,27,33,28,31,25)(34,35)(36,37)(38,41,42,40,39)', '(1,5,9,11,2)(3,8,6,14,12)(7,10,16,18,17)(13,21,22,15,19)(24,25,31,28,33,27,30,32,26,29)(36,37)', '(1,6,4,5,8,11,2,9,14,3,12)(7,19,18,20,13,16,22,15,21,17,10)(23,26,32,24,30,33,29,25,27,31,28)(34,35)(36,37)(38,42,39,41,40)', '(1,7,9,21,8,20,12,18,3,13)(2,10)(4,15,5,16,6,17,11,19,14,22)(23,27,29,26,33,30,25,31,24,28)(34,36)(35,37)(38,40,41,39,42)', '(1,6,2,3,4)(5,11,8,12,9)(7,20,15,16,22)(10,17,13,19,21)(23,27,30,29,33)(24,26,32,25,28)', '(1,2,11,9,5)(3,12,14,6,8)(7,17,15,16,20,19,10,21,22,13,18)(23,28,25,31,30)(24,27,26,32,33)(34,35)(36,37)(38,41,42,40,39)'])
|
| Matrix group: | $\left\langle \left(\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
5 & 7 & 4 & 0 \\
10 & 10 & 10 & 0 \\
8 & 10 & 6 & 4
\end{array}\right), \left(\begin{array}{rrrr}
4 & 0 & 0 & 0 \\
5 & 9 & 4 & 0 \\
2 & 2 & 10 & 0 \\
2 & 2 & 6 & 4
\end{array}\right), \left(\begin{array}{rrrr}
3 & 2 & 9 & 8 \\
10 & 6 & 4 & 9 \\
6 & 4 & 1 & 9 \\
0 & 6 & 1 & 4
\end{array}\right), \left(\begin{array}{rrrr}
9 & 0 & 0 & 0 \\
7 & 5 & 10 & 0 \\
6 & 6 & 5 & 0 \\
3 & 6 & 4 & 1
\end{array}\right), \left(\begin{array}{rrrr}
7 & 2 & 7 & 7 \\
3 & 9 & 3 & 8 \\
1 & 2 & 5 & 0 \\
8 & 9 & 0 & 1
\end{array}\right), \left(\begin{array}{rrrr}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right), \left(\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
0 & 0 & 8 & 0 \\
0 & 0 & 0 & 8
\end{array}\right), \left(\begin{array}{rrrr}
6 & 4 & 3 & 2 \\
5 & 7 & 3 & 5 \\
0 & 4 & 6 & 9 \\
1 & 1 & 1 & 9
\end{array}\right), \left(\begin{array}{rrrr}
7 & 0 & 9 & 0 \\
9 & 9 & 7 & 10 \\
0 & 4 & 3 & 2 \\
0 & 9 & 4 & 3
\end{array}\right), \left(\begin{array}{rrrr}
0 & 10 & 3 & 5 \\
10 & 8 & 3 & 3 \\
6 & 7 & 4 & 1 \\
0 & 6 & 1 & 1
\end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{11})$ |
magma:G := MatrixGroup< 4, GF(11) | [[2, 0, 0, 0, 5, 7, 4, 0, 10, 10, 10, 0, 8, 10, 6, 4], [4, 0, 0, 0, 5, 9, 4, 0, 2, 2, 10, 0, 2, 2, 6, 4], [3, 2, 9, 8, 10, 6, 4, 9, 6, 4, 1, 9, 0, 6, 1, 4], [9, 0, 0, 0, 7, 5, 10, 0, 6, 6, 5, 0, 3, 6, 4, 1], [7, 2, 7, 7, 3, 9, 3, 8, 1, 2, 5, 0, 8, 9, 0, 1], [3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3], [8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8], [6, 4, 3, 2, 5, 7, 3, 5, 0, 4, 6, 9, 1, 1, 1, 9], [7, 0, 9, 0, 9, 9, 7, 10, 0, 4, 3, 2, 0, 9, 4, 3], [0, 10, 3, 5, 10, 8, 3, 3, 6, 7, 4, 1, 0, 6, 1, 1]] >;
gap:G := Group([[[ Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^4, Z(11)^7, Z(11)^2, 0*Z(11) ], [ Z(11)^5, Z(11)^5, Z(11)^5, 0*Z(11) ], [ Z(11)^3, Z(11)^5, Z(11)^9, Z(11)^2 ]], [[ Z(11)^2, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^4, Z(11)^6, Z(11)^2, 0*Z(11) ], [ Z(11), Z(11), Z(11)^5, 0*Z(11) ], [ Z(11), Z(11), Z(11)^9, Z(11)^2 ]], [[ Z(11)^8, Z(11), Z(11)^6, Z(11)^3 ], [ Z(11)^5, Z(11)^9, Z(11)^2, Z(11)^6 ], [ Z(11)^9, Z(11)^2, Z(11)^0, Z(11)^6 ], [ 0*Z(11), Z(11)^9, Z(11)^0, Z(11)^2 ]], [[ Z(11)^6, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^7, Z(11)^4, Z(11)^5, 0*Z(11) ], [ Z(11)^9, Z(11)^9, Z(11)^4, 0*Z(11) ], [ Z(11)^8, Z(11)^9, Z(11)^2, Z(11)^0 ]], [[ Z(11)^7, Z(11), Z(11)^7, Z(11)^7 ], [ Z(11)^8, Z(11)^6, Z(11)^8, Z(11)^3 ], [ Z(11)^0, Z(11), Z(11)^4, 0*Z(11) ], [ Z(11)^3, Z(11)^6, 0*Z(11), Z(11)^0 ]], [[ Z(11)^8, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^8, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^8, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^8 ]], [[ Z(11)^3, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^3, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^3, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^3 ]], [[ Z(11)^9, Z(11)^2, Z(11)^8, Z(11) ], [ Z(11)^4, Z(11)^7, Z(11)^8, Z(11)^4 ], [ 0*Z(11), Z(11)^2, Z(11)^9, Z(11)^6 ], [ Z(11)^0, Z(11)^0, Z(11)^0, Z(11)^6 ]], [[ Z(11)^7, 0*Z(11), Z(11)^6, 0*Z(11) ], [ Z(11)^6, Z(11)^6, Z(11)^7, Z(11)^5 ], [ 0*Z(11), Z(11)^2, Z(11)^8, Z(11) ], [ 0*Z(11), Z(11)^6, Z(11)^2, Z(11)^8 ]], [[ 0*Z(11), Z(11)^5, Z(11)^8, Z(11)^4 ], [ Z(11)^5, Z(11)^3, Z(11)^8, Z(11)^8 ], [ Z(11)^9, Z(11)^7, Z(11)^2, Z(11)^0 ], [ 0*Z(11), Z(11)^9, Z(11)^0, Z(11)^0 ]]]);
sage:MS = MatrixSpace(GF(11), 4, 4)
G = MatrixGroup([MS([[2, 0, 0, 0], [5, 7, 4, 0], [10, 10, 10, 0], [8, 10, 6, 4]]), MS([[4, 0, 0, 0], [5, 9, 4, 0], [2, 2, 10, 0], [2, 2, 6, 4]]), MS([[3, 2, 9, 8], [10, 6, 4, 9], [6, 4, 1, 9], [0, 6, 1, 4]]), MS([[9, 0, 0, 0], [7, 5, 10, 0], [6, 6, 5, 0], [3, 6, 4, 1]]), MS([[7, 2, 7, 7], [3, 9, 3, 8], [1, 2, 5, 0], [8, 9, 0, 1]]), MS([[3, 0, 0, 0], [0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]]), MS([[8, 0, 0, 0], [0, 8, 0, 0], [0, 0, 8, 0], [0, 0, 0, 8]]), MS([[6, 4, 3, 2], [5, 7, 3, 5], [0, 4, 6, 9], [1, 1, 1, 9]]), MS([[7, 0, 9, 0], [9, 9, 7, 10], [0, 4, 3, 2], [0, 9, 4, 3]]), MS([[0, 10, 3, 5], [10, 8, 3, 3], [6, 7, 4, 1], [0, 6, 1, 1]])])
|
| Direct product: |
$C_5$ $\, \times\, $ $(C_{22}:F_{11}^2.C_2)$ |
| Semidirect product: |
$C_{11}^3$ $\,\rtimes\,$ $(D_{10}:C_{10}^2)$ |
$(C_{11}^3:C_5^3)$ $\,\rtimes\,$ $(C_2\times D_4)$ |
|
|
more information |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_{22}:F_{11}^2)$ . $C_{10}$ (5) |
$(C_{11}^3:C_{10}^3)$ . $C_2$ |
$(C_{11}^3:C_{10}^2)$ . $D_{10}$ |
$(C_{11}^3:C_{10}^2)$ . $D_{10}$ |
all 124 |
Elements of the group are displayed as matrices in $\GL_{4}(\F_{11})$.
The $1075 \times 1075$ character table is not available for this group.
The $315 \times 315$ rational character table is not available for this group.