Properties

Label 2662000.a
Order \( 2^{4} \cdot 5^{3} \cdot 11^{3} \)
Exponent \( 2^{2} \cdot 5 \cdot 11 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 5^{2} \)
$\card{Z(G)}$ 10
$\card{\Aut(G)}$ \( 2^{8} \cdot 5^{4} \cdot 11^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \cdot 5^{2} \)
Perm deg. $42$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 42 | (38,39,40,42,41), (1,2,6,9,4,14,5,3,8,12,11)(7,15,20,10,22,18,17,16,19,21,13)(23,24,29,31,26,30,25,28,32,33,27)(38,40,41,39,42), (34,35)(36,37)(38,39,40,42,41), (1,3,9,11,5,6,12,14,2,8,4)(7,18,13,22,21,10,19,20,16,15,17)(23,25,24,28,29,32,31,33,26,27,30)(38,41,42,40,39), (1,4,2,5,14,9,11,6,8,12)(7,10,21,13,15,18,20,16,17,22)(24,29,26,32,30,27,33,28,31,25)(34,35)(36,37)(38,41,42,40,39), (1,5,9,11,2)(3,8,6,14,12)(7,10,16,18,17)(13,21,22,15,19)(24,25,31,28,33,27,30,32,26,29)(36,37), (1,6,4,5,8,11,2,9,14,3,12)(7,19,18,20,13,16,22,15,21,17,10)(23,26,32,24,30,33,29,25,27,31,28)(34,35)(36,37)(38,42,39,41,40), (1,7,9,21,8,20,12,18,3,13)(2,10)(4,15,5,16,6,17,11,19,14,22)(23,27,29,26,33,30,25,31,24,28)(34,36)(35,37)(38,40,41,39,42), (1,6,2,3,4)(5,11,8,12,9)(7,20,15,16,22)(10,17,13,19,21)(23,27,30,29,33)(24,26,32,25,28), (1,2,11,9,5)(3,12,14,6,8)(7,17,15,16,20,19,10,21,22,13,18)(23,28,25,31,30)(24,27,26,32,33)(34,35)(36,37)(38,41,42,40,39) >;
 
Copy content gap:G := Group( (38,39,40,42,41), (1,2,6,9,4,14,5,3,8,12,11)(7,15,20,10,22,18,17,16,19,21,13)(23,24,29,31,26,30,25,28,32,33,27)(38,40,41,39,42), (34,35)(36,37)(38,39,40,42,41), (1,3,9,11,5,6,12,14,2,8,4)(7,18,13,22,21,10,19,20,16,15,17)(23,25,24,28,29,32,31,33,26,27,30)(38,41,42,40,39), (1,4,2,5,14,9,11,6,8,12)(7,10,21,13,15,18,20,16,17,22)(24,29,26,32,30,27,33,28,31,25)(34,35)(36,37)(38,41,42,40,39), (1,5,9,11,2)(3,8,6,14,12)(7,10,16,18,17)(13,21,22,15,19)(24,25,31,28,33,27,30,32,26,29)(36,37), (1,6,4,5,8,11,2,9,14,3,12)(7,19,18,20,13,16,22,15,21,17,10)(23,26,32,24,30,33,29,25,27,31,28)(34,35)(36,37)(38,42,39,41,40), (1,7,9,21,8,20,12,18,3,13)(2,10)(4,15,5,16,6,17,11,19,14,22)(23,27,29,26,33,30,25,31,24,28)(34,36)(35,37)(38,40,41,39,42), (1,6,2,3,4)(5,11,8,12,9)(7,20,15,16,22)(10,17,13,19,21)(23,27,30,29,33)(24,26,32,25,28), (1,2,11,9,5)(3,12,14,6,8)(7,17,15,16,20,19,10,21,22,13,18)(23,28,25,31,30)(24,27,26,32,33)(34,35)(36,37)(38,41,42,40,39) );
 
Copy content sage:G = PermutationGroup(['(38,39,40,42,41)', '(1,2,6,9,4,14,5,3,8,12,11)(7,15,20,10,22,18,17,16,19,21,13)(23,24,29,31,26,30,25,28,32,33,27)(38,40,41,39,42)', '(34,35)(36,37)(38,39,40,42,41)', '(1,3,9,11,5,6,12,14,2,8,4)(7,18,13,22,21,10,19,20,16,15,17)(23,25,24,28,29,32,31,33,26,27,30)(38,41,42,40,39)', '(1,4,2,5,14,9,11,6,8,12)(7,10,21,13,15,18,20,16,17,22)(24,29,26,32,30,27,33,28,31,25)(34,35)(36,37)(38,41,42,40,39)', '(1,5,9,11,2)(3,8,6,14,12)(7,10,16,18,17)(13,21,22,15,19)(24,25,31,28,33,27,30,32,26,29)(36,37)', '(1,6,4,5,8,11,2,9,14,3,12)(7,19,18,20,13,16,22,15,21,17,10)(23,26,32,24,30,33,29,25,27,31,28)(34,35)(36,37)(38,42,39,41,40)', '(1,7,9,21,8,20,12,18,3,13)(2,10)(4,15,5,16,6,17,11,19,14,22)(23,27,29,26,33,30,25,31,24,28)(34,36)(35,37)(38,40,41,39,42)', '(1,6,2,3,4)(5,11,8,12,9)(7,20,15,16,22)(10,17,13,19,21)(23,27,30,29,33)(24,26,32,25,28)', '(1,2,11,9,5)(3,12,14,6,8)(7,17,15,16,20,19,10,21,22,13,18)(23,28,25,31,30)(24,27,26,32,33)(34,35)(36,37)(38,41,42,40,39)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1441929371628022358098222723374343869687805798794806844069893513591011977259639750053736786067554403236939999930627285346169658884185602790483894442747765753211321091563508577931413064965554962176854161380114771532019295839250303039909,2662000)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.9;
 

Group information

Description:$C_{22}:F_{11}^2.C_{10}$
Order: \(2662000\)\(\medspace = 2^{4} \cdot 5^{3} \cdot 11^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(212960000\)\(\medspace = 2^{8} \cdot 5^{4} \cdot 11^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_5$ x 3, $C_{11}$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 10 11 20 22 44 55 110 220
Elements 1 4247 1320 87124 1449628 1330 537680 31690 25300 77920 344560 101200 2662000
Conjugacy classes   1 7 2 74 518 15 48 33 13 90 222 52 1075
Divisions 1 7 2 19 131 15 12 33 8 23 56 8 315
Autjugacy classes 1 6 2 17 78 7 10 15 4 15 31 4 190

Minimal presentations

Permutation degree:$42$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 100 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e \mid a^{10}=b^{10}=c^{110}=d^{11}=e^{22}=[c,e]=[d,e]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([10, 2, 5, 2, 5, 2, 5, 11, 11, 2, 11, 20, 3422702, 4560162, 82, 19563203, 29100413, 106005004, 2427514, 7735524, 2435284, 144, 87432005, 216015, 1471225, 5811635, 355, 135800006, 105016, 8505026, 5950036, 4400007, 1320017, 880027, 88047, 76590008, 16335018, 3339028, 585038, 268, 170200009, 36300019, 7310029, 1245039]); a,b,c,d,e := Explode([G.1, G.3, G.5, G.8, G.9]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "c10", "d", "e", "e2"]);
 
Copy content gap:G := PcGroupCode(1441929371628022358098222723374343869687805798794806844069893513591011977259639750053736786067554403236939999930627285346169658884185602790483894442747765753211321091563508577931413064965554962176854161380114771532019295839250303039909,2662000); a := G.1; b := G.3; c := G.5; d := G.8; e := G.9;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1441929371628022358098222723374343869687805798794806844069893513591011977259639750053736786067554403236939999930627285346169658884185602790483894442747765753211321091563508577931413064965554962176854161380114771532019295839250303039909,2662000)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.9;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1441929371628022358098222723374343869687805798794806844069893513591011977259639750053736786067554403236939999930627285346169658884185602790483894442747765753211321091563508577931413064965554962176854161380114771532019295839250303039909,2662000)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.9;
 
Permutation group:Degree $42$ $\langle(38,39,40,42,41), (1,2,6,9,4,14,5,3,8,12,11)(7,15,20,10,22,18,17,16,19,21,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 42 | (38,39,40,42,41), (1,2,6,9,4,14,5,3,8,12,11)(7,15,20,10,22,18,17,16,19,21,13)(23,24,29,31,26,30,25,28,32,33,27)(38,40,41,39,42), (34,35)(36,37)(38,39,40,42,41), (1,3,9,11,5,6,12,14,2,8,4)(7,18,13,22,21,10,19,20,16,15,17)(23,25,24,28,29,32,31,33,26,27,30)(38,41,42,40,39), (1,4,2,5,14,9,11,6,8,12)(7,10,21,13,15,18,20,16,17,22)(24,29,26,32,30,27,33,28,31,25)(34,35)(36,37)(38,41,42,40,39), (1,5,9,11,2)(3,8,6,14,12)(7,10,16,18,17)(13,21,22,15,19)(24,25,31,28,33,27,30,32,26,29)(36,37), (1,6,4,5,8,11,2,9,14,3,12)(7,19,18,20,13,16,22,15,21,17,10)(23,26,32,24,30,33,29,25,27,31,28)(34,35)(36,37)(38,42,39,41,40), (1,7,9,21,8,20,12,18,3,13)(2,10)(4,15,5,16,6,17,11,19,14,22)(23,27,29,26,33,30,25,31,24,28)(34,36)(35,37)(38,40,41,39,42), (1,6,2,3,4)(5,11,8,12,9)(7,20,15,16,22)(10,17,13,19,21)(23,27,30,29,33)(24,26,32,25,28), (1,2,11,9,5)(3,12,14,6,8)(7,17,15,16,20,19,10,21,22,13,18)(23,28,25,31,30)(24,27,26,32,33)(34,35)(36,37)(38,41,42,40,39) >;
 
Copy content gap:G := Group( (38,39,40,42,41), (1,2,6,9,4,14,5,3,8,12,11)(7,15,20,10,22,18,17,16,19,21,13)(23,24,29,31,26,30,25,28,32,33,27)(38,40,41,39,42), (34,35)(36,37)(38,39,40,42,41), (1,3,9,11,5,6,12,14,2,8,4)(7,18,13,22,21,10,19,20,16,15,17)(23,25,24,28,29,32,31,33,26,27,30)(38,41,42,40,39), (1,4,2,5,14,9,11,6,8,12)(7,10,21,13,15,18,20,16,17,22)(24,29,26,32,30,27,33,28,31,25)(34,35)(36,37)(38,41,42,40,39), (1,5,9,11,2)(3,8,6,14,12)(7,10,16,18,17)(13,21,22,15,19)(24,25,31,28,33,27,30,32,26,29)(36,37), (1,6,4,5,8,11,2,9,14,3,12)(7,19,18,20,13,16,22,15,21,17,10)(23,26,32,24,30,33,29,25,27,31,28)(34,35)(36,37)(38,42,39,41,40), (1,7,9,21,8,20,12,18,3,13)(2,10)(4,15,5,16,6,17,11,19,14,22)(23,27,29,26,33,30,25,31,24,28)(34,36)(35,37)(38,40,41,39,42), (1,6,2,3,4)(5,11,8,12,9)(7,20,15,16,22)(10,17,13,19,21)(23,27,30,29,33)(24,26,32,25,28), (1,2,11,9,5)(3,12,14,6,8)(7,17,15,16,20,19,10,21,22,13,18)(23,28,25,31,30)(24,27,26,32,33)(34,35)(36,37)(38,41,42,40,39) );
 
Copy content sage:G = PermutationGroup(['(38,39,40,42,41)', '(1,2,6,9,4,14,5,3,8,12,11)(7,15,20,10,22,18,17,16,19,21,13)(23,24,29,31,26,30,25,28,32,33,27)(38,40,41,39,42)', '(34,35)(36,37)(38,39,40,42,41)', '(1,3,9,11,5,6,12,14,2,8,4)(7,18,13,22,21,10,19,20,16,15,17)(23,25,24,28,29,32,31,33,26,27,30)(38,41,42,40,39)', '(1,4,2,5,14,9,11,6,8,12)(7,10,21,13,15,18,20,16,17,22)(24,29,26,32,30,27,33,28,31,25)(34,35)(36,37)(38,41,42,40,39)', '(1,5,9,11,2)(3,8,6,14,12)(7,10,16,18,17)(13,21,22,15,19)(24,25,31,28,33,27,30,32,26,29)(36,37)', '(1,6,4,5,8,11,2,9,14,3,12)(7,19,18,20,13,16,22,15,21,17,10)(23,26,32,24,30,33,29,25,27,31,28)(34,35)(36,37)(38,42,39,41,40)', '(1,7,9,21,8,20,12,18,3,13)(2,10)(4,15,5,16,6,17,11,19,14,22)(23,27,29,26,33,30,25,31,24,28)(34,36)(35,37)(38,40,41,39,42)', '(1,6,2,3,4)(5,11,8,12,9)(7,20,15,16,22)(10,17,13,19,21)(23,27,30,29,33)(24,26,32,25,28)', '(1,2,11,9,5)(3,12,14,6,8)(7,17,15,16,20,19,10,21,22,13,18)(23,28,25,31,30)(24,27,26,32,33)(34,35)(36,37)(38,41,42,40,39)'])
 
Matrix group:$\left\langle \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 5 & 7 & 4 & 0 \\ 10 & 10 & 10 & 0 \\ 8 & 10 & 6 & 4 \end{array}\right), \left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 5 & 9 & 4 & 0 \\ 2 & 2 & 10 & 0 \\ 2 & 2 & 6 & 4 \end{array}\right), \left(\begin{array}{rrrr} 3 & 2 & 9 & 8 \\ 10 & 6 & 4 & 9 \\ 6 & 4 & 1 & 9 \\ 0 & 6 & 1 & 4 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 7 & 5 & 10 & 0 \\ 6 & 6 & 5 & 0 \\ 3 & 6 & 4 & 1 \end{array}\right), \left(\begin{array}{rrrr} 7 & 2 & 7 & 7 \\ 3 & 9 & 3 & 8 \\ 1 & 2 & 5 & 0 \\ 8 & 9 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right), \left(\begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{array}\right), \left(\begin{array}{rrrr} 6 & 4 & 3 & 2 \\ 5 & 7 & 3 & 5 \\ 0 & 4 & 6 & 9 \\ 1 & 1 & 1 & 9 \end{array}\right), \left(\begin{array}{rrrr} 7 & 0 & 9 & 0 \\ 9 & 9 & 7 & 10 \\ 0 & 4 & 3 & 2 \\ 0 & 9 & 4 & 3 \end{array}\right), \left(\begin{array}{rrrr} 0 & 10 & 3 & 5 \\ 10 & 8 & 3 & 3 \\ 6 & 7 & 4 & 1 \\ 0 & 6 & 1 & 1 \end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{11})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 4, GF(11) | [[2, 0, 0, 0, 5, 7, 4, 0, 10, 10, 10, 0, 8, 10, 6, 4], [4, 0, 0, 0, 5, 9, 4, 0, 2, 2, 10, 0, 2, 2, 6, 4], [3, 2, 9, 8, 10, 6, 4, 9, 6, 4, 1, 9, 0, 6, 1, 4], [9, 0, 0, 0, 7, 5, 10, 0, 6, 6, 5, 0, 3, 6, 4, 1], [7, 2, 7, 7, 3, 9, 3, 8, 1, 2, 5, 0, 8, 9, 0, 1], [3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3], [8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8], [6, 4, 3, 2, 5, 7, 3, 5, 0, 4, 6, 9, 1, 1, 1, 9], [7, 0, 9, 0, 9, 9, 7, 10, 0, 4, 3, 2, 0, 9, 4, 3], [0, 10, 3, 5, 10, 8, 3, 3, 6, 7, 4, 1, 0, 6, 1, 1]] >;
 
Copy content gap:G := Group([[[ Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^4, Z(11)^7, Z(11)^2, 0*Z(11) ], [ Z(11)^5, Z(11)^5, Z(11)^5, 0*Z(11) ], [ Z(11)^3, Z(11)^5, Z(11)^9, Z(11)^2 ]], [[ Z(11)^2, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^4, Z(11)^6, Z(11)^2, 0*Z(11) ], [ Z(11), Z(11), Z(11)^5, 0*Z(11) ], [ Z(11), Z(11), Z(11)^9, Z(11)^2 ]], [[ Z(11)^8, Z(11), Z(11)^6, Z(11)^3 ], [ Z(11)^5, Z(11)^9, Z(11)^2, Z(11)^6 ], [ Z(11)^9, Z(11)^2, Z(11)^0, Z(11)^6 ], [ 0*Z(11), Z(11)^9, Z(11)^0, Z(11)^2 ]], [[ Z(11)^6, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^7, Z(11)^4, Z(11)^5, 0*Z(11) ], [ Z(11)^9, Z(11)^9, Z(11)^4, 0*Z(11) ], [ Z(11)^8, Z(11)^9, Z(11)^2, Z(11)^0 ]], [[ Z(11)^7, Z(11), Z(11)^7, Z(11)^7 ], [ Z(11)^8, Z(11)^6, Z(11)^8, Z(11)^3 ], [ Z(11)^0, Z(11), Z(11)^4, 0*Z(11) ], [ Z(11)^3, Z(11)^6, 0*Z(11), Z(11)^0 ]], [[ Z(11)^8, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^8, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^8, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^8 ]], [[ Z(11)^3, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^3, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^3, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^3 ]], [[ Z(11)^9, Z(11)^2, Z(11)^8, Z(11) ], [ Z(11)^4, Z(11)^7, Z(11)^8, Z(11)^4 ], [ 0*Z(11), Z(11)^2, Z(11)^9, Z(11)^6 ], [ Z(11)^0, Z(11)^0, Z(11)^0, Z(11)^6 ]], [[ Z(11)^7, 0*Z(11), Z(11)^6, 0*Z(11) ], [ Z(11)^6, Z(11)^6, Z(11)^7, Z(11)^5 ], [ 0*Z(11), Z(11)^2, Z(11)^8, Z(11) ], [ 0*Z(11), Z(11)^6, Z(11)^2, Z(11)^8 ]], [[ 0*Z(11), Z(11)^5, Z(11)^8, Z(11)^4 ], [ Z(11)^5, Z(11)^3, Z(11)^8, Z(11)^8 ], [ Z(11)^9, Z(11)^7, Z(11)^2, Z(11)^0 ], [ 0*Z(11), Z(11)^9, Z(11)^0, Z(11)^0 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(11), 4, 4) G = MatrixGroup([MS([[2, 0, 0, 0], [5, 7, 4, 0], [10, 10, 10, 0], [8, 10, 6, 4]]), MS([[4, 0, 0, 0], [5, 9, 4, 0], [2, 2, 10, 0], [2, 2, 6, 4]]), MS([[3, 2, 9, 8], [10, 6, 4, 9], [6, 4, 1, 9], [0, 6, 1, 4]]), MS([[9, 0, 0, 0], [7, 5, 10, 0], [6, 6, 5, 0], [3, 6, 4, 1]]), MS([[7, 2, 7, 7], [3, 9, 3, 8], [1, 2, 5, 0], [8, 9, 0, 1]]), MS([[3, 0, 0, 0], [0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]]), MS([[8, 0, 0, 0], [0, 8, 0, 0], [0, 0, 8, 0], [0, 0, 0, 8]]), MS([[6, 4, 3, 2], [5, 7, 3, 5], [0, 4, 6, 9], [1, 1, 1, 9]]), MS([[7, 0, 9, 0], [9, 9, 7, 10], [0, 4, 3, 2], [0, 9, 4, 3]]), MS([[0, 10, 3, 5], [10, 8, 3, 3], [6, 7, 4, 1], [0, 6, 1, 1]])])
 
Direct product: $C_5$ $\, \times\, $ $(C_{22}:F_{11}^2.C_2)$
Semidirect product: $C_{11}^3$ $\,\rtimes\,$ $(D_{10}:C_{10}^2)$ $(C_{11}^3:C_5^3)$ $\,\rtimes\,$ $(C_2\times D_4)$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_{22}:F_{11}^2)$ . $C_{10}$ (5) $(C_{11}^3:C_{10}^3)$ . $C_2$ $(C_{11}^3:C_{10}^2)$ . $D_{10}$ $(C_{11}^3:C_{10}^2)$ . $D_{10}$ all 124

Elements of the group are displayed as matrices in $\GL_{4}(\F_{11})$.

Homology

Abelianization: $C_{2} \times C_{10}^{2} \simeq C_{2}^{3} \times C_{5}^{2}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2} \times C_{10}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 244 normal subgroups (97 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_{10}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_{11}^2:C_{110}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times D_4$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^3$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}^3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1075 \times 1075$ character table is not available for this group.

Rational character table

The $315 \times 315$ rational character table is not available for this group.