Subgroup ($H$) information
| Description: | $C_{22}:F_{11}$ |
| Order: | \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \) |
| Index: | \(11\) |
| Exponent: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Generators: |
$a^{5}, a^{2}, bc^{6}, d^{11}, d^{2}$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_2\times C_{11}^3:C_{10}$ |
| Order: | \(26620\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{3} \) |
| Exponent: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{11}^3.C_5.C_{10}^2.C_2^3$ |
| $\operatorname{Aut}(H)$ | $F_{11}^2:C_2^2$, of order \(48400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
| $W$ | $C_{11}:F_{11}$, of order \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $11$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-1$ |
| Projective image | $C_{11}^3:C_{10}$ |