Properties

Label 2654208.kw.2.C
Order $ 2^{14} \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5.A_4^3:S_4$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Index: \(2\)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $\langle(2,4,7,10)(3,6,8)(5,9)(11,12)(14,16,19,22)(17,20,23,18)(21,24), (16,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $5$

The subgroup is characteristic (hence normal), maximal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $A_4^3.C_2^4:\GL(2,\mathbb{Z}/4)$
Order: \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6.C_6.C_2^5$, of order \(21233664\)\(\medspace = 2^{18} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_2^6.C_3^3.C_2^4.A_4^2.C_2^4$, of order \(63700992\)\(\medspace = 2^{18} \cdot 3^{5} \)
$W$$A_4^3.C_2^5:S_4$, of order \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$A_4^3.C_2^4:\GL(2,\mathbb{Z}/4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^3.C_2^5:S_4$