Properties

Label 2654208.kw
Order \( 2^{15} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{18} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $24$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,2,3,5,8,11,6,7)(13,14,15,17)(16,18)(19,21,23,24)(20,22), (2,4,7,10)(3,6,8)(5,9)(11,12)(14,16,19,22)(17,20,23,18)(21,24) >;
 
Copy content gap:G := Group( (1,2,3,5,8,11,6,7)(13,14,15,17)(16,18)(19,21,23,24)(20,22), (2,4,7,10)(3,6,8)(5,9)(11,12)(14,16,19,22)(17,20,23,18)(21,24) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,5,8,11,6,7)(13,14,15,17)(16,18)(19,21,23,24)(20,22)', '(2,4,7,10)(3,6,8)(5,9)(11,12)(14,16,19,22)(17,20,23,18)(21,24)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5766047208620199096918065916217259696248646097323603890270721366699802654196171763523216147767455705645426218489910291459023772981150328468058135469111312126087926771241718672968216584080539957492657688472688864600933203640702302749499774859333692708529357447893787743904161058227842881426198604167505181829562649655232713532394485564141587831104940213221068756977214012281210909383087922707255179438960645645583468123714852526220807456184941311188759901769312115447468238697650504162892976934455681207581640679890281878850522571907229077297014746133140807304684589762095307519248217943537024872291524279372374340549302152108406053594574605774418411523743492543755017189185065303416958203874702440076950766122371124820564451668353772759296,2654208)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19;
 

Group information

Description:$A_4^3.C_2^4:\GL(2,\mathbb{Z}/4)$
Order: \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^6.C_3^3.C_2^6.C_6.C_2^5$, of order \(21233664\)\(\medspace = 2^{18} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 23295 19160 423168 404520 110592 147456 862464 442368 221184 2654208
Conjugacy classes   1 78 4 153 112 16 2 100 6 16 488
Divisions 1 78 4 147 109 14 2 88 4 7 454
Autjugacy classes 1 70 4 99 104 8 1 58 2 4 351

Minimal presentations

Permutation degree:$24$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid c^{2}=e^{6}=f^{12}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([19, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 8040876, 90697413, 96, 108498590, 15788812, 12864675, 83651854, 42444977, 72815794, 19998473, 36240357, 17648211, 270, 122364869, 107574072, 72345355, 21226862, 5306572, 270279414, 136659121, 32925524, 10145056, 386, 14599, 1050650, 83329485, 4468883, 342159722, 149594931, 76155922, 357113, 15913344, 7833613, 844520, 1084110, 502, 5253129, 73388668, 1012367, 136866, 150565, 47984, 560, 168482453, 15096, 120451, 19291622, 9585681, 85100574, 40186417, 41762372, 20881239, 580195, 291566, 145209, 1280460, 640255, 1600610, 672924685, 336462368, 146168115, 16547398, 8733401, 4136940, 732810254, 149221473, 3693652, 30533850, 3939949, 3775808, 2585667, 11162895, 116684962, 68586101, 51743304, 26134363, 726119, 357690, 179869, 509027344, 254513699, 210978486, 68372713, 34186412, 2325730, 1674581, 128076, 474997, 32183, 666620945, 58506660, 184384567, 3545930, 37231581, 886576, 5909891, 2216310, 597140226, 394948477, 212445668, 18402430, 1247748, 1507687, 372722, 279603, 91180]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "f4", "g", "h", "i", "j", "k", "l", "m", "n"]);
 
Copy content gap:G := PcGroupCode(5766047208620199096918065916217259696248646097323603890270721366699802654196171763523216147767455705645426218489910291459023772981150328468058135469111312126087926771241718672968216584080539957492657688472688864600933203640702302749499774859333692708529357447893787743904161058227842881426198604167505181829562649655232713532394485564141587831104940213221068756977214012281210909383087922707255179438960645645583468123714852526220807456184941311188759901769312115447468238697650504162892976934455681207581640679890281878850522571907229077297014746133140807304684589762095307519248217943537024872291524279372374340549302152108406053594574605774418411523743492543755017189185065303416958203874702440076950766122371124820564451668353772759296,2654208); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.12; h := G.13; i := G.14; j := G.15; k := G.16; l := G.17; m := G.18; n := G.19;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5766047208620199096918065916217259696248646097323603890270721366699802654196171763523216147767455705645426218489910291459023772981150328468058135469111312126087926771241718672968216584080539957492657688472688864600933203640702302749499774859333692708529357447893787743904161058227842881426198604167505181829562649655232713532394485564141587831104940213221068756977214012281210909383087922707255179438960645645583468123714852526220807456184941311188759901769312115447468238697650504162892976934455681207581640679890281878850522571907229077297014746133140807304684589762095307519248217943537024872291524279372374340549302152108406053594574605774418411523743492543755017189185065303416958203874702440076950766122371124820564451668353772759296,2654208)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5766047208620199096918065916217259696248646097323603890270721366699802654196171763523216147767455705645426218489910291459023772981150328468058135469111312126087926771241718672968216584080539957492657688472688864600933203640702302749499774859333692708529357447893787743904161058227842881426198604167505181829562649655232713532394485564141587831104940213221068756977214012281210909383087922707255179438960645645583468123714852526220807456184941311188759901769312115447468238697650504162892976934455681207581640679890281878850522571907229077297014746133140807304684589762095307519248217943537024872291524279372374340549302152108406053594574605774418411523743492543755017189185065303416958203874702440076950766122371124820564451668353772759296,2654208)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19;
 
Permutation group:Degree $24$ $\langle(1,2,3,5,8,11,6,7)(13,14,15,17)(16,18)(19,21,23,24)(20,22), (2,4,7,10)(3,6,8)(5,9)(11,12)(14,16,19,22)(17,20,23,18)(21,24)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,2,3,5,8,11,6,7)(13,14,15,17)(16,18)(19,21,23,24)(20,22), (2,4,7,10)(3,6,8)(5,9)(11,12)(14,16,19,22)(17,20,23,18)(21,24) >;
 
Copy content gap:G := Group( (1,2,3,5,8,11,6,7)(13,14,15,17)(16,18)(19,21,23,24)(20,22), (2,4,7,10)(3,6,8)(5,9)(11,12)(14,16,19,22)(17,20,23,18)(21,24) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,5,8,11,6,7)(13,14,15,17)(16,18)(19,21,23,24)(20,22)', '(2,4,7,10)(3,6,8)(5,9)(11,12)(14,16,19,22)(17,20,23,18)(21,24)'])
 
Transitive group: 36T46557 36T46638 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^9$ . $(C_6^3:S_4)$ $C_2^4$ . $(A_4:S_4^2.S_4)$ $(C_2^5.A_4^3:S_4)$ . $C_2$ $(C_2^5.A_4^3:S_4)$ . $C_2$ all 33

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 43 normal subgroups (39 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $A_4^3.C_2^5:S_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^5.A_4^3:A_4$ $G/G' \simeq$ $C_2^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^3$ $G/\Phi \simeq$ $A_4^3.C_2^3:S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^6.C_2^6$ $G/\operatorname{Fit} \simeq$ $C_3^3:S_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $A_4^3.C_2^4:\GL(2,\mathbb{Z}/4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_6^3:S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^8.C_2^6.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3\wr C_3$

Subgroup diagram and profile

Series

Derived series $A_4^3.C_2^4:\GL(2,\mathbb{Z}/4)$ $\rhd$ $C_2^5.A_4^3:A_4$ $\rhd$ $C_2^6.C_3^3.C_2^6$ $\rhd$ $A_4^3$ $\rhd$ $C_2^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $A_4^3.C_2^4:\GL(2,\mathbb{Z}/4)$ $\rhd$ $A_4^3.C_2^6:A_4$ $\rhd$ $C_2^5.A_4^3:A_4$ $\rhd$ $C_2^4.A_4^3:A_4$ $\rhd$ $C_2^6.C_3^3.C_2^6$ $\rhd$ $C_2^6.C_3^3.C_2^4$ $\rhd$ $A_4:S_4^2$ $\rhd$ $A_4^3$ $\rhd$ $C_2^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $A_4^3.C_2^4:\GL(2,\mathbb{Z}/4)$ $\rhd$ $C_2^5.A_4^3:A_4$ $\rhd$ $C_2^4.A_4^3:A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $488 \times 488$ character table is not available for this group.

Rational character table

The $454 \times 454$ rational character table is not available for this group.