# Group 2654208.kw downloaded from the LMFDB on 03 February 2026. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # Constructions GPC := PcGroupCode(5766047208620199096918065916217259696248646097323603890270721366699802654196171763523216147767455705645426218489910291459023772981150328468058135469111312126087926771241718672968216584080539957492657688472688864600933203640702302749499774859333692708529357447893787743904161058227842881426198604167505181829562649655232713532394485564141587831104940213221068756977214012281210909383087922707255179438960645645583468123714852526220807456184941311188759901769312115447468238697650504162892976934455681207581640679890281878850522571907229077297014746133140807304684589762095307519248217943537024872291524279372374340549302152108406053594574605774418411523743492543755017189185065303416958203874702440076950766122371124820564451668353772759296,2654208); a := GPC.1; b := GPC.2; c := GPC.4; d := GPC.5; e := GPC.7; f := GPC.9; g := GPC.12; h := GPC.13; i := GPC.14; j := GPC.15; k := GPC.16; l := GPC.17; m := GPC.18; n := GPC.19; GPerm := Group( (1,2,3,5,8,11,6,7)(13,14,15,17)(16,18)(19,21,23,24)(20,22), (2,4,7,10)(3,6,8)(5,9)(11,12)(14,16,19,22)(17,20,23,18)(21,24) ); # Booleans booleans_2654208_kw := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false);