Subgroup ($H$) information
| Description: | $A_4^2:C_2^4.S_4$ |
| Order: | \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \) |
| Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(3,4)(11,12)(17,18)(23,24), (13,14)(15,16), (13,17,16)(14,18,15), (3,6) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.
Ambient group ($G$) information
| Description: | $C_2^8.S_3^4:C_8$ |
| Order: | \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \) |
| Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(10616832\)\(\medspace = 2^{17} \cdot 3^{4} \) |
| $\operatorname{Aut}(H)$ | $A_4^2.A_4^2.C_2^6.C_2$ |
| $W$ | $S_4^2.\POPlus(4,3)$, of order \(331776\)\(\medspace = 2^{12} \cdot 3^{4} \) |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | $C_2^5.S_4^2:S_3^2$ |
| Normal closure: | $C_2^9.C_3:S_3^3$ |
| Core: | $C_2^9$ |
Other information
| Number of subgroups in this autjugacy class | $4$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $S_4^2.S_4\wr C_2.C_2$ |