Properties

Label 2654208.dk.48.EK
Order $ 2^{11} \cdot 3^{3} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4^2:C_2^4.S_4$
Order: \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(3,4)(11,12)(17,18)(23,24), (13,14)(15,16), (13,17,16)(14,18,15), (3,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^8.S_3^4:C_8$
Order: \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(10616832\)\(\medspace = 2^{17} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $A_4^2.A_4^2.C_2^6.C_2$
$W$$S_4^2.\POPlus(4,3)$, of order \(331776\)\(\medspace = 2^{12} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^5.S_4^2:S_3^2$
Normal closure:$C_2^9.C_3:S_3^3$
Core:$C_2^9$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4^2.S_4\wr C_2.C_2$