Properties

Label 2654208.dk
Order \( 2^{15} \cdot 3^{4} \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{17} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $24$
Trans deg. $24$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,19,15,9)(2,20,16,10)(3,23,18,7)(4,24,17,8)(5,21,13,11,6,22,14,12), (1,16,6,18,4,14)(2,15,5,17,3,13)(7,24,11,22,8,23,12,21)(9,20)(10,19) >;
 
Copy content gap:G := Group( (1,19,15,9)(2,20,16,10)(3,23,18,7)(4,24,17,8)(5,21,13,11,6,22,14,12), (1,16,6,18,4,14)(2,15,5,17,3,13)(7,24,11,22,8,23,12,21)(9,20)(10,19) );
 
Copy content sage:G = PermutationGroup(['(1,19,15,9)(2,20,16,10)(3,23,18,7)(4,24,17,8)(5,21,13,11,6,22,14,12)', '(1,16,6,18,4,14)(2,15,5,17,3,13)(7,24,11,22,8,23,12,21)(9,20)(10,19)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(14482154296405135150827323848765829472418904569617263553445972577046173675848872180528119237942371850559322987513395694260198781190789551504922271958441116082133765375573781699937518115414442394851816061578519525586010138403747227339134494262561103608219483006178536416995741907329451506270367090245485962765748966937936046084794927982658439281380907336069958540893779184399804852393402117507173964447224755512242237592604798151302805306163179129392390164232044840715930385884471763630271266967172612363947427330035286179329701981634359473423043719580204984883897367897838481544198222176787601716827439139114134340751235009417761978790282927348636114523995113582333467777611553728656995151503155368266596447585983935392894097823930091317888,2654208)'); a = G.1; b = G.4; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19;
 

Group information

Description:$C_2^8.S_3^4:C_8$
Order: \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(10616832\)\(\medspace = 2^{17} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16 24
Elements 1 19999 6560 226272 183392 732672 600576 331776 552960 2654208
Conjugacy classes   1 47 5 104 87 20 106 4 6 380
Divisions 1 47 5 98 87 7 102 1 2 350
Autjugacy classes 1 33 5 58 50 7 49 1 2 206

Minimal presentations

Permutation degree:$24$
Transitive degree:$24$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid a^{8}=c^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([19, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 38, 96, 131462979, 23746678, 38019649, 6303804, 22261924, 23786883, 45062342, 7880691, 270, 141484037, 11381784, 14775355, 7979150, 349410158, 94115081, 3105860, 12412155, 5261296, 2758388, 386, 304330759, 54112026, 1189293, 890195, 65804, 268382456, 8692299, 16867486, 46477865, 22795752, 7113361, 1150268, 222270, 502, 99821449, 117538588, 3994607, 1997346, 2968645, 333003, 165442, 52046026, 4454237, 64104528, 17786803, 7087694, 4356501, 1203964, 26477, 6432, 618, 87563, 262686, 32306737, 16350404, 9554199, 8766250, 1592477, 5635, 61461516, 252248287, 80154, 13483, 148925965, 1378976, 67913062, 33267113, 16978356, 570291854, 174337953, 82246, 61745, 12607503, 85100578, 788097, 131495, 22074, 144001168, 378421667, 67395961, 34535252, 15802563, 1430374, 610619, 232728, 162979, 93230, 41892, 7091729, 42550308, 11967357, 13075456, 726577, 55611, 60760, 374284818, 58014181, 56142814, 13450973, 5107560, 2534371, 1182806, 266626, 98780]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.4, G.5, G.7, G.9, G.11, G.13, G.14, G.15, G.16, G.17, G.18, G.19]); AssignNames(~G, ["a", "a2", "a4", "b", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l", "m"]);
 
Copy content gap:G := PcGroupCode(14482154296405135150827323848765829472418904569617263553445972577046173675848872180528119237942371850559322987513395694260198781190789551504922271958441116082133765375573781699937518115414442394851816061578519525586010138403747227339134494262561103608219483006178536416995741907329451506270367090245485962765748966937936046084794927982658439281380907336069958540893779184399804852393402117507173964447224755512242237592604798151302805306163179129392390164232044840715930385884471763630271266967172612363947427330035286179329701981634359473423043719580204984883897367897838481544198222176787601716827439139114134340751235009417761978790282927348636114523995113582333467777611553728656995151503155368266596447585983935392894097823930091317888,2654208); a := G.1; b := G.4; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(14482154296405135150827323848765829472418904569617263553445972577046173675848872180528119237942371850559322987513395694260198781190789551504922271958441116082133765375573781699937518115414442394851816061578519525586010138403747227339134494262561103608219483006178536416995741907329451506270367090245485962765748966937936046084794927982658439281380907336069958540893779184399804852393402117507173964447224755512242237592604798151302805306163179129392390164232044840715930385884471763630271266967172612363947427330035286179329701981634359473423043719580204984883897367897838481544198222176787601716827439139114134340751235009417761978790282927348636114523995113582333467777611553728656995151503155368266596447585983935392894097823930091317888,2654208)'); a = G.1; b = G.4; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(14482154296405135150827323848765829472418904569617263553445972577046173675848872180528119237942371850559322987513395694260198781190789551504922271958441116082133765375573781699937518115414442394851816061578519525586010138403747227339134494262561103608219483006178536416995741907329451506270367090245485962765748966937936046084794927982658439281380907336069958540893779184399804852393402117507173964447224755512242237592604798151302805306163179129392390164232044840715930385884471763630271266967172612363947427330035286179329701981634359473423043719580204984883897367897838481544198222176787601716827439139114134340751235009417761978790282927348636114523995113582333467777611553728656995151503155368266596447585983935392894097823930091317888,2654208)'); a = G.1; b = G.4; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19;
 
Permutation group:Degree $24$ $\langle(1,19,15,9)(2,20,16,10)(3,23,18,7)(4,24,17,8)(5,21,13,11,6,22,14,12), (1,16,6,18,4,14)(2,15,5,17,3,13)(7,24,11,22,8,23,12,21)(9,20)(10,19)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,19,15,9)(2,20,16,10)(3,23,18,7)(4,24,17,8)(5,21,13,11,6,22,14,12), (1,16,6,18,4,14)(2,15,5,17,3,13)(7,24,11,22,8,23,12,21)(9,20)(10,19) >;
 
Copy content gap:G := Group( (1,19,15,9)(2,20,16,10)(3,23,18,7)(4,24,17,8)(5,21,13,11,6,22,14,12), (1,16,6,18,4,14)(2,15,5,17,3,13)(7,24,11,22,8,23,12,21)(9,20)(10,19) );
 
Copy content sage:G = PermutationGroup(['(1,19,15,9)(2,20,16,10)(3,23,18,7)(4,24,17,8)(5,21,13,11,6,22,14,12)', '(1,16,6,18,4,14)(2,15,5,17,3,13)(7,24,11,22,8,23,12,21)(9,20)(10,19)'])
 
Transitive group: 24T22665 24T22667 24T22669 24T22670 all 6
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^8$ . $(S_3^4:C_8)$ $(C_2^9.C_3:S_3^3)$ . $D_4$ $(C_2^9.S_3^2\wr C_2)$ . $C_2$ $C_2^9$ . $(C_3^4.C_2\wr C_4)$ all 22

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2} \times C_{8} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 26 normal subgroups (24 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $S_4^2.S_4\wr C_2.C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^8.C_3.S_3^3$ $G/G' \simeq$ $C_2\times C_8$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $S_4^2.S_4\wr C_2.C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^9$ $G/\operatorname{Fit} \simeq$ $C_3^4.C_2\wr C_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^8.S_3^4:C_8$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_3^4.C_2\wr C_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7.C_2^4.C_2^3.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4$

Subgroup diagram and profile

Series

Derived series $C_2^8.S_3^4:C_8$ $\rhd$ $C_2^8.C_3.S_3^3$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^8.S_3^4:C_8$ $\rhd$ $C_2^9.S_3^2\wr C_2$ $\rhd$ $A_4^2.(C_2\times S_4^2:C_4)$ $\rhd$ $C_2^8.C_3^4.C_2^4$ $\rhd$ $C_2^8.C_3.S_3^3$ $\rhd$ $C_2^8.C_3^3.D_6$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^8.S_3^4:C_8$ $\rhd$ $C_2^8.C_3.S_3^3$ $\rhd$ $C_2^8.C_3^3.D_6$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 11 larger groups in the database.

This group is a maximal quotient of 6 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $380 \times 380$ character table is not available for this group.

Rational character table

The $350 \times 350$ rational character table is not available for this group.