Properties

Label 26400.q.55.a1.a1
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,3):D_5$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(55\)\(\medspace = 5 \cdot 11 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 8 & 7 & 7 & 3 \\ 2 & 2 & 9 & 7 \\ 5 & 9 & 5 & 4 \\ 10 & 5 & 9 & 10 \end{array}\right), \left(\begin{array}{rrrr} 8 & 1 & 6 & 3 \\ 0 & 6 & 1 & 3 \\ 5 & 4 & 7 & 4 \\ 9 & 9 & 6 & 4 \end{array}\right), \left(\begin{array}{rrrr} 7 & 4 & 7 & 0 \\ 7 & 4 & 0 & 4 \\ 3 & 0 & 4 & 4 \\ 0 & 8 & 7 & 7 \end{array}\right), \left(\begin{array}{rrrr} 1 & 8 & 4 & 7 \\ 3 & 8 & 7 & 8 \\ 2 & 2 & 7 & 10 \\ 9 & 5 & 7 & 6 \end{array}\right), \left(\begin{array}{rrrr} 4 & 5 & 5 & 2 \\ 4 & 10 & 4 & 4 \\ 5 & 4 & 8 & 3 \\ 1 & 7 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrr} 2 & 8 & 3 & 5 \\ 5 & 3 & 9 & 3 \\ 5 & 4 & 8 & 3 \\ 6 & 5 & 6 & 9 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and solvable.

Ambient group ($G$) information

Description: $\GL(2,11):C_2$
Order: \(26400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \PSL(2,11).C_2\times C_2\times F_5$
$\operatorname{Aut}(H)$ $C_2^2\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$W$$D_5\times S_4$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$\GL(2,3):D_5$
Normal closure:$\GL(2,11):C_2$
Core:$C_5:C_4$
Minimal over-subgroups:$\GL(2,11):C_2$
Maximal under-subgroups:$C_5\times \GL(2,3)$$\SL(2,3):D_5$$C_5:\GL(2,3)$$C_8:D_{10}$$C_5:D_{12}$$\GL(2,3):C_2$

Other information

Number of subgroups in this conjugacy class$55$
Möbius function$-1$
Projective image not computed