Properties

Label 264.30.2.a1.c1
Order $ 2^{2} \cdot 3 \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{132}$
Order: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Index: \(2\)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Generators: $ab^{33}, b^{12}, b^{66}, b^{88}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, maximal, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $Q_8\times C_{33}$
Order: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{10}\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^2\times C_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(S)$$C_2^2\times C_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{132}$
Normalizer:$Q_8\times C_{33}$
Minimal over-subgroups:$Q_8\times C_{33}$
Maximal under-subgroups:$C_{66}$$C_{44}$$C_{12}$
Autjugate subgroups:264.30.2.a1.a1264.30.2.a1.b1

Other information

Möbius function$-1$
Projective image$C_2^2$