Subgroup ($H$) information
Description: | $\SL(2,64)$ |
Order: | \(262080\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
Index: | $1$ |
Exponent: | \(8190\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
Generators: |
$\left(\begin{array}{ll}\alpha^{23} & \alpha^{26} \\ \alpha^{52} & \alpha^{11} \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{19} & \alpha^{18} \\ \alpha^{15} & \alpha^{19} \\ \end{array}\right)$
|
Derived length: | $0$ |
The subgroup is the commutator subgroup (hence characteristic and normal), the socle, a direct factor, nonabelian, a Hall subgroup, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.
Ambient group ($G$) information
Description: | $\SL(2,64)$ |
Order: | \(262080\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
Exponent: | \(8190\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
Derived length: | $0$ |
The ambient group is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.
Quotient group ($Q$) structure
Description: | $C_1$ |
Order: | $1$ |
Exponent: | $1$ |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\SL(2,64).C_6$, of order \(1572480\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13 \) |
$\operatorname{Aut}(H)$ | $\SL(2,64).C_6$, of order \(1572480\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13 \) |
$W$ | $\SL(2,64)$, of order \(262080\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
Related subgroups
Centralizer: | $C_1$ | ||||
Normalizer: | $\SL(2,64)$ | ||||
Complements: | $C_1$ | ||||
Maximal under-subgroups: | $F_{64}$ | $\SL(2,8)$ | $D_{65}$ | $D_{63}$ | $A_5$ |
Other information
Möbius function | $1$ |
Projective image | $\SL(2,64)$ |