Properties

Label 262080.a.1.a1.a1
Order $ 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,64)$
Order: \(262080\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
Index: $1$
Exponent: \(8190\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
Generators: $\left(\begin{array}{ll}\alpha^{23} & \alpha^{26} \\ \alpha^{52} & \alpha^{11} \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{19} & \alpha^{18} \\ \alpha^{15} & \alpha^{19} \\ \end{array}\right)$ Copy content Toggle raw display
Derived length: $0$

The subgroup is the commutator subgroup (hence characteristic and normal), the socle, a direct factor, nonabelian, a Hall subgroup, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Ambient group ($G$) information

Description: $\SL(2,64)$
Order: \(262080\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
Exponent: \(8190\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
Derived length:$0$

The ambient group is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,64).C_6$, of order \(1572480\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13 \)
$\operatorname{Aut}(H)$ $\SL(2,64).C_6$, of order \(1572480\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13 \)
$W$$\SL(2,64)$, of order \(262080\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$\SL(2,64)$
Complements:$C_1$
Maximal under-subgroups:$F_{64}$$\SL(2,8)$$D_{65}$$D_{63}$$A_5$

Other information

Möbius function$1$
Projective image$\SL(2,64)$