Properties

Label 25992.bj.38.a1.b1
Order $ 2^{2} \cdot 3^{2} \cdot 19 $
Index $ 2 \cdot 19 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times F_{19}$
Order: \(684\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 19 \)
Index: \(38\)\(\medspace = 2 \cdot 19 \)
Exponent: \(342\)\(\medspace = 2 \cdot 3^{2} \cdot 19 \)
Generators: $a^{6}, d, a^{2}, b^{2}c^{14}d^{7}, a^{9}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $D_{19}^2:C_{18}$
Order: \(25992\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 19^{2} \)
Exponent: \(684\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 19 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 38T36.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{19}^2.C_{36}.C_2^2$
$\operatorname{Aut}(H)$ $C_2\times F_{19}$, of order \(684\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 19 \)
$W$$F_{19}$, of order \(342\)\(\medspace = 2 \cdot 3^{2} \cdot 19 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times F_{19}$
Normal closure:$C_{19}^2:(C_2\times C_{18})$
Core:$C_1$
Minimal over-subgroups:$C_{19}^2:(C_2\times C_{18})$
Maximal under-subgroups:$C_{19}:C_{18}$$F_{19}$$F_{19}$$C_{38}:C_6$$C_2\times C_{18}$
Autjugate subgroups:25992.bj.38.a1.a1

Other information

Number of subgroups in this conjugacy class$38$
Möbius function$0$
Projective image$D_{19}^2:C_{18}$