Properties

Label 2592.ly.3.a1
Order $ 2^{5} \cdot 3^{3} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_6^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(3\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(10,12), (10,12,11), (13,14), (1,2,3), (4,5), (7,9,8), (7,8), (1,2)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_2\times S_3^4$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_2\wr S_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_6^3:C_2^2.S_4^2$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{res}(S)$$C_2^2\times S_3^3:S_4$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_3^3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$S_3\times D_6^2$
Normal closure:$C_2\times S_3^4$
Core:$C_2\times S_3^3$
Minimal over-subgroups:$C_2\times S_3^4$
Maximal under-subgroups:$C_2\times S_3^3$$C_3:D_6^2$$C_2\times S_3^3$$C_3:D_6^2$$C_2\times S_3^3$$C_3\times D_6^2$$C_2\times S_3^3$$C_2\times S_3^3$$C_2\times D_6^2$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$S_3^4$