Properties

Label 2592.ly.12.s1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times S_3^2$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(13,14), (4,6,5), (1,2,3), (7,9,8), (7,8)(10,12), (1,2)(10,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times S_3^4$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_2\wr S_4$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $D_6^2:C_2^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{res}(S)$$D_6^2:C_2^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$S_3\times D_6^2$
Normal closure:$C_3^4:C_2^3$
Core:$C_3^2:D_6$
Minimal over-subgroups:$C_3^4:C_2^3$$C_2\times S_3^3$$C_3\times D_6^2$$C_2\times S_3^3$
Maximal under-subgroups:$C_3^2:D_6$$C_3^2\times D_6$$C_3\times S_3^2$$C_6\times D_6$$S_3\times D_6$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$12$
Möbius function not computed
Projective image$S_3^4$