Properties

Label 2592.lc.2.a1.a1
Order $ 2^{4} \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,5,8,3,7,6)(4,9)(10,12), (12,13), (11,13,12), (10,11)(12,13), (1,5,2) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^2:D_6\times S_4$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_3.(D_4\times S_4)$
$\operatorname{Aut}(H)$ $C_3^2:D_6\times S_4$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\operatorname{res}(S)$$C_3^2:D_6\times S_4$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_3^2:D_6\times S_4$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^2:D_6\times S_4$
Complements:$C_2$ $C_2$ $C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_3^2:D_6\times S_4$
Maximal under-subgroups:$S_4\times \He_3$$A_4\times C_3^2:C_6$$\He_3:S_4$$C_6^2:D_6$$C_6^2:D_6$$C_6^2:D_6$$C_3^2:S_3^2$
Autjugate subgroups:2592.lc.2.a1.b1

Other information

Möbius function$-1$
Projective image$C_3^2:D_6\times S_4$