Properties

Label 2592.lc.1296.c1.b1
Order $ 2 $
Index $ 2^{4} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(4,9)(5,6)(7,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_3^2:D_6\times S_4$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_3.(D_4\times S_4)$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_6\times S_4$
Normalizer:$D_6\times S_4$
Normal closure:$C_3:S_3$
Core:$C_1$
Minimal over-subgroups:$C_6$$C_6$$C_6$$S_3$$S_3$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$
Autjugate subgroups:2592.lc.1296.c1.a1

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$C_3^2:D_6\times S_4$