Properties

Label 2592.he.4.b1.a1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_3^2.A_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $b^{9}, d^{3}, cd^{3}, a^{2}cd^{3}, d^{2}, b^{14}d^{3}, b^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_6^3.D_6$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.(C_6\times S_3).C_2$
$\operatorname{Aut}(H)$ $(A_4\times \He_3).D_6$
$\operatorname{res}(S)$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6^3.D_6$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_6^3.C_6$$C_6^2.S_3^2$$C_6^2.S_3^2$
Maximal under-subgroups:$C_3^3.A_4$$S_3\times C_6^2$$C_6^2.C_6$$C_6^2.C_6$$C_6^2.C_6$$C_3^3.C_6$
Autjugate subgroups:2592.he.4.b1.b1

Other information

Möbius function$2$
Projective image$C_6^3.D_6$