Subgroup ($H$) information
Description: | $C_6^2.S_3^2$ |
Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Index: | \(2\) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$a^{3}, d^{2}, b^{6}, b^{9}, b^{2}, d^{3}, cd^{3}, a^{2}cd^{3}$
|
Derived length: | $3$ |
The subgroup is normal, maximal, a direct factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_6^3.D_6$ |
Order: | \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_6^2.(C_6\times S_3).C_2$ |
$\operatorname{Aut}(H)$ | $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
$\operatorname{res}(S)$ | $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
$W$ | $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $C_6^3.D_6$ |