Subgroup ($H$) information
Description: | $C_6^3$ |
Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$c, d^{2}, b^{6}, d^{3}, e, a^{2}cd^{3}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial) and abelian (hence metabelian and an A-group).
Ambient group ($G$) information
Description: | $C_6^3.D_6$ |
Order: | \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $D_6$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_6^2.(C_6\times S_3).C_2$ |
$\operatorname{Aut}(H)$ | $C_2\times \PSL(2,7)\times \SL(3,3)$, of order \(1886976\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 7 \cdot 13 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
$W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Other information
Möbius function | $-6$ |
Projective image | $C_6^2.S_3^2$ |