Properties

Label 2592.dx.9.a1
Order $ 2^{5} \cdot 3^{2} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:D_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(12,16,15), (11,14,13), (1,2)(3,4,6,5)(11,16,14,12)(13,15), (3,6)(4,5)(11,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2:\SOPlus(4,2)$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.Q_8.C_6.C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_2\times C_6^2:\SD_{16}$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2\times C_6^2:\SD_{16}$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^2:D_4$
Normal closure:$C_6^2:\SOPlus(4,2)$
Core:$C_6^2$
Minimal over-subgroups:$C_6^2:\SOPlus(4,2)$
Maximal under-subgroups:$D_6:D_6$$C_6^2:C_4$$S_3^2:C_4$$S_3^2:C_2^2$$C_2.\SOPlus(4,2)$$C_4:D_4$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$-1$
Projective image$C_2\times C_3^4:D_4$