Properties

Label 2560.ec.4.T
Order $ 2^{7} \cdot 5 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$F_5\times C_2^5$
Order: \(640\)\(\medspace = 2^{7} \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a, f, a^{2}, c^{2}, g, b^{2}, b^{5}c, d$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^4:D_4\times F_5$
Order: \(2560\)\(\medspace = 2^{9} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(754974720\)\(\medspace = 2^{24} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^5.\GL(5,2)\times F_5$
$\card{W}$\(80\)\(\medspace = 2^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_2^5$
Normalizer:$C_2^4:D_4\times F_5$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$D_{10}.C_2^6$
Maximal under-subgroups:$C_2^4\times F_5$$C_2^4\times D_{10}$$C_2^4\times F_5$$C_2^4\times F_5$$C_2^4\times F_5$$C_2^5\times C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed