Properties

Label 2560.ec.2.B
Order $ 2^{8} \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}.C_2^6$
Order: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Index: \(2\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $b^{2}, f, b^{5}c, g, d, a^{2}, a, c^{2}, e$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2^4:D_4\times F_5$
Order: \(2560\)\(\medspace = 2^{9} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(754974720\)\(\medspace = 2^{24} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ Group of order \(220200960\)\(\medspace = 2^{21} \cdot 3 \cdot 5 \cdot 7 \)
$\card{W}$\(160\)\(\medspace = 2^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^4:D_4\times F_5$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_2^4:D_4\times F_5$
Maximal under-subgroups:$D_{10}.C_2^5$$C_{20}:C_2^5$$F_5\times C_2^5$$C_2^5:F_5$$F_5\times C_2^5$$C_2^5:F_5$$D_{10}.C_2^5$$D_{10}.C_2^5$$D_{10}.C_2^5$$C_4^2:C_2^4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed